4591: [Shoi2015]超能粒子炮·改

题意:多组询问,求

\[S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^{18}
\]


lucas定理,展开一层然后整除分块一下,不完整的块单独拿出来,就是

\[S(n,k) = S(\frac{n}{p}, \frac{k}{p}-1)S(n \bmod p, p-1) + \binom{\frac{n}{p}}{ \frac{k}{p}} S(n \bmod p, k \bmod p)
\]

预处理\(n,k \le 2333\)的

单次询问复杂度log^2

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2500, P = 2333;
inline ll read() {
char c=getchar(); ll x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} ll n, k;
int c[N][N], s[N][N];
inline ll lucas(ll n, ll m) {
if(n < m) return 0;
ll ans = 1;
for(; m; n /= P, m /= P) ans = ans * c[n % P][m % P] %P;
return ans;
}
ll S(ll n, ll k) {
if(n <= P && k <= P) return s[n][k];
ll ans = (S(n / P, k / P - 1) * S(n % P, P - 1) + lucas(n / P, k / P) * S(n % P, k % P)) %P;
return ans;
}
int main() {
freopen("in", "r", stdin);
int T = read();
c[0][0] = 1;
for(int i=1; i<=P; i++) {
c[i][0] = 1;
for(int j=1; j<=i; j++) c[i][j] = (c[i-1][j] + c[i-1][j-1]) %P;
}
for(int i=0; i<=P; i++) {
s[i][0] = c[i][0];
for(int j=1; j<=P; j++) s[i][j] = (s[i][j-1] + c[i][j]) %P;
}
while(T--) {
n = read(); k = read();
printf("%lld\n", S(n, k));
}
}

bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]的更多相关文章

  1. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  2. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  3. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  4. bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 先说说自己的想法: 从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置, ...

  5. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  6. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  7. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  8. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  9. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

随机推荐

  1. JqGrid 多行表头设置

    1.我想要统计的效果是这样的 2.只要在初始化表格中加上如下代码就可以了: jQuery("#tbAbroadStatisticByUnit").jqGrid('setGroupH ...

  2. JEECG 3.7.2版本发布,企业级JAVA快速开发平台

    JEECG 3.7.2版本发布 -  微云快速开发平台 JEECG是一款基于代码生成器的J2EE快速开发平台,开源界"小普元"超越传统商业企业级开发平台.引领新的开发模式(Onli ...

  3. BLE空中升级 谈(一)

    BLE 空中升级谈 -- CC2541 的产品开发中OAD注意事项 现在的智能设备(可穿戴,智能家居,智能玩具等)是越来越多了,大公司的产品颜值高,功能强大而完备的应该说是比比皆是,这里不谈论它是满足 ...

  4. [国嵌笔记][036][关闭MMU和CACHE]

    关闭MMU和CACHE 1.Cache是一种容量小,但存取速度非常快的存储器,它保存最近用到的存储器中数据的拷贝.按功能分为ICache(指令Cache)和DCache(数据Cache) 2.虚拟地址 ...

  5. zookeeper部署和运行

    环境准备: 操作系统,此处使用windows系统 Java运行环境,JDK1.6以上 下载对应操作系统zookeeper安装包zookeeper-x.x.x.tar.gz,下载地址:http://zo ...

  6. es6语法部分浏览器支持引发的坑

    es2015部分浏览器支持踩的坑 自从es2015出现以来,以其更丰富的api和简介的语法,使得js功能越来越丰富写起来也更便捷.比较早先的时候,浏览器是完全不支持的,我们使用的时候,必须要使用bab ...

  7. :nth-child(n)

    规定属于其父元素的第二个子元素的每个 p 的背景色: p:nth-child(2) { background:#ff0000; } 1定义和用法 :nth-child(n) 选择器匹配属于其父元素的第 ...

  8. 关于Vuex的初步使用

    store.js文件中定义各个访问状态和方法 import Vue from "vue" import Vuex from "vuex" Vue.use(Vue ...

  9. Core Graphics 和Quartz 2D的区别

    quartz是一个通用的术语,用于描述在IOS和MAC OS X中整个媒体层用到的多种技术 包括图形.动画.音频.适配.  Quart 2D 是一组二位绘图和渲染API,Core Graphic会使用 ...

  10. JavaScript ES6 Arrow Functions(箭头函数)

    1. 介绍 第一眼看到ES6新增加的 arrow function 时,感觉非常像 lambda 表达式. 那么arrow function是干什么的呢?可以看作为匿名函数的简写方式. 如: var ...