题意:有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积吗?


思路:表示在i个位置选了j人的最大乘积,表示在i个位置选了j人的最小乘积。为什么要记录最小乘积?因为每个学生的能力值可能为正可能为负,那么必须保存最小乘积,才能保证不遗漏负数相乘的情况。


AC代码

#include <stdio.h>
#include <algorithm>
using namespace std;
#define inf 1e14
typedef long long LL;
typedef pair<LL, LL> pii;
const int maxn = 50+5;
//d(i, j, 1)表示在i个位置选了j人的最大乘积
//d(i, j, 1)表示在i个位置选了j人的最小乘积
LL dp[maxn][15][2];
int a[maxn];

int main() {
    int n, cnt, d;
    while(scanf("%d", &n) == 1) {
        for(int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            dp[i][1][1] = dp[i][1][0] = a[i];
        }
        scanf("%d%d", &cnt ,&d);
        for(int i = 1; i <= n; i++) {
            for(int j = 2; j <= min(cnt, i); j++) {
                dp[i][j][1] = -inf,
                dp[i][j][0] = inf;
                for(int k = i-1; k > 0 && k >= i-d && k >= j-1; k--) {
                    for(int q = 0; q < 2; q++) {
                        dp[i][j][1] = max(dp[i][j][1], dp[k][j-1][q] * a[i]);
                        dp[i][j][0] = min(dp[i][j][0], dp[k][j-1][q] * a[i]);
                    }
                }
            }
        }

        LL ans = -inf;
        for(int i = cnt; i <= n; i++) {
            ans = max(ans, dp[i][cnt][1]);
        }
        printf("%lld\n", ans);
    }
    return 0;
}

如有不当之处欢迎指出!

合唱团 (线性dp)的更多相关文章

  1. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  2. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  3. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  4. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  5. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  6. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  7. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  8. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  9. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

随机推荐

  1. 使用SoapUI调用Vsphere Web Service

    项目中经常需要调用Webservice进行验证测试,下面就介绍下如何使用测试工具SoapUI调用Vsphere vcenter的 Web Service VSphere的Webservice地址默认为 ...

  2. Python中几种数据类型list, tuple,dict,set的使用演示

    还是直接上代码,看着代码运行,看函数介绍 # coding=utf-8 # 1 list-列表 的用法 students = [1,2,3] a = 5 classmates = [students* ...

  3. junit断言总结

    我们平时编写自己的测试类,如果没有断言,那么就没写测试的必要了. JUnit框架用一组assert方法封装了最常见的测试任务.这些assert方法可以极大地简化单元测试的编写. Assert类包含了一 ...

  4. Django环境安装--Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. Python及Django学习QQ群:453 ...

  5. centos下在php.ini设置时区

    错误: PHP Warning: Unknown: It is not safe to rely on the system's timezone settings. You are *require ...

  6. PDO prepare预处理语句

    预处理语句 $dsn="mysql:host=localhost;dbname=emp"; try{ $pdo=new PDO($dsn,'root','root'); }catc ...

  7. IE各个版本的差异性

    1.IE6a.不支持png半透明图片,只能用filter实现b.不支持css的max-width.max-height.min-width.min-height其他不用说,一团糟,不过项目中还是得去兼 ...

  8. css正三角倒三角

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  9. 不需要客户端插件PHP也能实现单点登录

    分析CAS原理,构建PHP单点登录 单点登录(Single Sign On , 简称 SSO )是目前比较流行的服务于企业业务整合的解决方案之一, SSO 使得在多个应用系统中,用户 只需要登录一次就 ...

  10. Java8之Lambda表达式基础

    Java 8中,将会提供对lambda的支持,函数式编程FP(Functional Programming)将会得到很好地支持,而函数式编程的一个重要特点就是适合并行运算. λ:希腊字母表中排序第十一 ...