●BZOJ 4826 [Hnoi2017]影魔
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4826
题解:
主席树,单调栈
以前还没做过这种维护信息的题,感觉好奇妙。
每对相邻的两个数所贡献的 P1 就直接在最后加入答案就好了,
以下是处理存在 s (i<s<j)的情况。
首先用单调栈维护出 L[i], R[i]分别表示 i 点左边和右边第一个值大于 K[i]的位置。
然后不难发现,如果对应的 L[i] 或 R[i] 存在于 K 数组中,那么
点对 (L[i],R[i]) 可以贡献一个 P1
点对 (L[i],i+1~R[i]-1) 每个都可以贡献一个 P2
点对 (L[i]+1~i-1,R[i]) 每个都可以贡献一个 P2
然后把这些点对看成是平面上的点,
那么就可以用两个主席树来处理好信息后,然后在线查询。
怎么维护呢?
注意到我们需要的是对平面的某个点或者是某条线段上的点进行值的累加。
且线段又只存在平行于 x 轴的和平行于 y 轴的。
所以两个主席树分别对应着维护平行着某一轴的线段的信息就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define filein(x) freopen(#x".in","r",stdin)
#define fileout(x) freopen(#x".out","w",stdout)
using namespace std;
const int MAXN=2e5+5;
int A[MAXN];
int N,M,P1,P2;
struct List{
int L[MAXN*2],R[MAXN*2],W[MAXN*2],Nxt[MAXN*2],Head[MAXN],lnt;
void Reset(){
lnt=2; memset(Head,0,sizeof(Head));
}
void Add(int p,int l,int r,int w){
L[lnt]=l; R[lnt]=r; W[lnt]=w;
Nxt[lnt]=Head[p]; Head[p]=lnt++;
}
}l1,l2;
struct CMT{
#define len ((r<ar?r:ar)-(l>al?l:al)+1)
int rt[MAXN],ls[MAXN*50],rs[MAXN*50],sz; ll Sum[MAXN*50],Add[MAXN*50];
void Insert(int &u,int l,int r,int al,int ar,int w){
++sz; ls[sz]=ls[u]; rs[sz]=rs[u];
Sum[sz]=Sum[u]; Add[sz]=Add[u]; u=sz;
if(al<=l&&r<=ar){
Add[u]+=w; Sum[u]+=len*w;
return;
}
int mid=(l+r)>>1; Sum[u]+=len*w;
if(al<=mid) Insert(ls[u],l,mid,al,ar,w);
if(mid<ar) Insert(rs[u],mid+1,r,al,ar,w);
}
ll Query(int v,int u,int l,int r,int al,int ar){
if(!u) return 0;
if(al<=l&&r<=ar) return Sum[u]-Sum[v];
int mid=(l+r)>>1; ll ret=(Add[u]-Add[v])*(len);
if(al<=mid) ret+=Query(ls[v],ls[u],l,mid,al,ar);
if(mid<ar) ret+=Query(rs[v],rs[u],mid+1,r,al,ar);
return ret;
}
void Build(const List &li){
for(int p=1;p<=N;p++){
rt[p]=rt[p-1];
for(int i=li.Head[p],l,r,w;i;i=li.Nxt[i]){
l=li.L[i]; r=li.R[i]; w=li.W[i];
Insert(rt[p],1,N,l,r,w);
}
}
}
ll Query(int l,int r){
return Query(rt[l-1],rt[r],1,N,l,r);
}
#undef len
}T1,T2;
char gc(){
return getchar();
static char s[MAXN];
static int bit=200000,p,len;
if(p>=len) len=fread(s,1,bit,stdin),s[len]=EOF,p=0;
return s[p++];
}
void read(int &x){
static int f; static char ch;
x=0; f=1; ch=gc();
while(ch<'0'||'9'<ch){if(ch=='-') f=-1;ch=gc();}
while('0'<=ch&&ch<='9'){x=x*10+ch-'0'; ch=gc();}
x=x*f;
}
void pre(){
static int L[MAXN],R[MAXN],stk[MAXN],stp[MAXN],top=0;
for(int i=1;i<=N;i++){
while(top&&A[i]>stk[top]) R[stp[top]]=i,top--;
L[i]=stp[top]; top++;
stk[top]=A[i]; stp[top]=i;
}
while(top) R[stp[top--]]=N+1;
for(int i=1;i<=N;i++){
if(1<=L[i]&&R[i]<=N) l1.Add(L[i],R[i],R[i],P1);
if(1<=L[i]&&i+1<=R[i]-1) l1.Add(L[i],i+1,R[i]-1,P2);
if(L[i]+1<=i-1&&R[i]<=N) l2.Add(R[i],L[i]+1,i-1,P2);
}
T1.Build(l1); T2.Build(l2);
}
int main(){
//filein(4826);
l1.Reset(); l2.Reset();
read(N); read(M); read(P1); read(P2);
for(int i=1;i<=N;i++) read(A[i]);
pre();
for(int i=1,l,r;i<=M;i++){
read(l); read(r);
printf("%lld\n",T1.Query(l,r)+T2.Query(l,r)+1ll*(r-l)*P1);
}
return 0;
}
●BZOJ 4826 [Hnoi2017]影魔的更多相关文章
- bzoj 4826: [Hnoi2017]影魔 [主席树 单调栈]
4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间 ...
- BZOJ:4826: [Hnoi2017]影魔
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵 ...
- BZOJ 4826: [Hnoi2017]影魔 单调栈 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4826 年少不知空间贵,相顾mle空流泪. 和上一道主席树求的东西差不多,求两种对 1. max(a ...
- BZOJ 4826: [Hnoi2017]影魔 单调栈+可持久化线段树
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样 的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个 ...
- BZOJ 4826 [Hnoi2017]影魔 ——扫描线 单调栈
首先用单调栈和扫描线处理出每一个数左面最近的比他大的数在$l[i]$,右面最近的比他大的数$r[i]$. 然后就可以考虑每种贡献是在什么时候产生的. 1.$(l[i],r[i])$产生$p1$的贡献 ...
- bzoj 4826: [Hnoi2017]影魔【单调栈+树状数组+扫描线】
参考:https://www.cnblogs.com/lcf-2000/p/6789680.html 这是一个相对码量少的做法,用到了区间修改区间查询的树状数组,详见:www.cnblogs.com/ ...
- 4826: [Hnoi2017]影魔
4826: [Hnoi2017]影魔 https://lydsy.com/JudgeOnline/problem.php?id=4826 分析: 莫队+单调栈+st表. 考虑如何O(1)加入一个点,删 ...
- [BZOJ4826][HNOI2017]影魔(主席树)
4826: [Hnoi2017]影魔 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 669 Solved: 384[Submit][Status][ ...
- 【LG3722】[HNOI2017]影魔
[LG3722][HNOI2017]影魔 题面 洛谷 题解 先使用单调栈求出\(i\)左边第一个比\(i\)大的位置\(lp_i\),和右边第一个比\(i\)大的位置\(rp_i\). 考虑\(i\) ...
随机推荐
- selenium webdriver API
元素定位 #coding=utf-8 from selenium import webdriver from selenium.webdriver.firefox.firefox_binary imp ...
- 几款有用的AndroidStudio插件
1.Android Parcelable code generator 顾名思义,这是个生成实现了Parcelable接口的代码的插件. 在你的类中,按下alt + insert键弹出插入代码的上下文 ...
- BM V7000数据恢复成功案例;服务器数据恢复
IBM V7000存储是一款定位中端的存储设备,很多企业选择该服务器作为存储,最近北亚数据恢复中心接到一例V7000服务器数据恢复案例,下面将对本次数据恢复的过程和数据恢复方法进行归纳总结,希望对各位 ...
- Node入门教程(1)目录
aicoder.com 全栈实习之简明 Node 入门文档 aicoder.com 线下实习: 不 8000 就业,不还实习费. 如果需要转载本文档,请联系老马,Q: 515154084 JS基础教程 ...
- Css之导航栏学习
Css: ul { list-style-type:none; margin:; padding:; overflow:hidden; background-color:blue; /*固定在顶部*/ ...
- JAVA_SE基础——72.自定义线程
进程 : 正在执行的程序称作为一个进程. 进程负责了内存空间的划分. 问题: windows号称是多任务的操作系统,那么windows是同时运行多个应用程序吗?从宏观的角度: windows确 ...
- Python设计TFTP客户端
#coding=utf-8 from socket import * from threading import Thread import struct def recvData(fileName, ...
- LeetCode & Q167-Two Sum II - Input array is sorted-Easy
Array Two Pointers Binary Search Description: Given an array of integers that is already sorted in a ...
- python全栈开发-re模块(正则表达式)应用(字符串的处理)
一.概述 就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,要讲他的具体用法要讲一本书!它内嵌在Python中,并通过 re 模块实现.你可以为想要匹配的相应字符串集指定规则:该 ...
- leetcode算法:Distribute Candies
Given an integer array with even length, where different numbers in this array represent different k ...