Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1977    Accepted Submission(s): 509

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants
to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end
of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.
Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent
Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
 
Input
There are multiple test cases. Please process till EOF.
For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.
In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.
The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
 
Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 
Sample Input
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 1
 
Sample Output
2 6
 
Author
FZUACM
 
Source

题意:

n个点,m条边,构建有权无向图。

求出删去最少条边数可以使得图没有最短路径,以及删出最多条边使得图仍有最多条路径。

思路:

最短路处理出最短路径图,做法是使用dis数组,若若dis[v]-dis[u] = w(u,v),则该路在最短路径中。

建出最短路径之后 跑一次网络流,得到第一个答案。

在跑最短路中记录最短路的最少路数,ans2 = m - minb.

#include <iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<cmath>
#include<map>
#include<queue>
using namespace std;
const int N=2005;
const int MAXN=(1<<31)-1;
int INF=0x7f7f7f7f;
int T,n,m,k,tot;
int cas=1;
int head[N];
struct Edge{
int to,w,next;
}edge[60005*2];
void addedge(int u,int v,int w){
edge[tot].to=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++; edge[tot].to=u;
edge[tot].w=w;
edge[tot].next=head[v];
head[v]=tot++;
} int dis[N],vis[N];
int minb[N];
int spfa(int s){
memset(dis,0x3f,sizeof dis);
memset(vis,0,sizeof vis);
memset(minb,0x3f,sizeof minb); queue<int> q;
dis[s]=0;
minb[s]=0;
vis[s]=1;
q.push(s); while(!q.empty()){
int u=q.front();q.pop();
vis[u]=0; for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to,w=edge[i].w;
if(dis[v]==dis[u]+w){
minb[v]=min(minb[v],minb[u]+1);
if(!vis[v]){
vis[v]=1;
q.push(v);
}
} if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
minb[v]=minb[u]+1;
if(!vis[v]){
vis[v]=1;
q.push(v);
}
} }
}
}
struct Eg{
int u,cap,rev;
Eg(int uu,int cc,int rr){
u=uu;cap=cc;rev=rr;
}
};
vector<Eg> G[N];
void add(int u,int v,int cap){
G[u].push_back(Eg(v,cap,G[v].size()));
G[v].push_back(Eg(u,0,G[u].size()-1));
} void build(){
for(int i=1;i<=n;i++){
for(int j=head[i];~j;j=edge[j].next){
int v=edge[j].to,w=edge[j].w;
if(dis[v]==dis[i]+w){
add(i,v,1); }
}
}
}
bool used[N];
int dfs(int v,int t,int f){
if(v==t) return f;
used[v]=true;
for(int i=0;i<G[v].size();i++){
Eg &e=G[v][i];
if(!used[e.u] && e.cap>0){
int d=dfs(e.u,t,min(f,e.cap));
if(d>0){
e.cap-=d;
G[e.u][e.rev].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t){
int flow=0;
while(1){
memset(used,0,sizeof used);
int f=dfs(s,t,INF);
if(f==0) return flow;
flow+=f;
}
}
void init(){
tot=0;
memset(head,-1,sizeof head);
for(int i=0;i<N;i++) G[i].clear();
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aaa","r",stdin);
#endif while(~scanf("%d%d",&n,&m)){
init();
for(int i=0;i<m;i++){
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
addedge(u,v,w);
}
spfa(1); build();
int ans=max_flow(1,n);
printf("%d %d\n",ans,m-minb[n]);
} return 0;
}

  

2015 多校联赛 ——HDU5294(最短路,最小切割)的更多相关文章

  1. 2015 多校联赛 ——HDU5301(技巧)

    Your current task is to make a ground plan for a residential building located in HZXJHS. So you must ...

  2. 2015 多校联赛 ——HDU5349(水)

    Problem Description A simple problem Problem Description You have a multiple set,and now there are t ...

  3. 2015 多校联赛 ——HDU5334(构造)

    Virtual Participation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot ...

  4. 2015 多校联赛 ——HDU5335(Walk out)

    Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S ...

  5. 2015 多校联赛 ——HDU5302(构造)

    Connect the Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. 2015 多校联赛 ——HDU5325(DFS)

    Crazy Bobo Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Tota ...

  7. 2015 多校联赛 ——HDU5316(线段树)

    Fantasy magicians usually gain their ability through one of three usual methods: possessing it as an ...

  8. 2015 多校联赛 ——HDU5323(搜索)

    Solve this interesting problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. 2015 多校联赛 ——HDU5319(模拟)

    Painter Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Su ...

随机推荐

  1. 1013团队Beta冲刺day7

    项目进展 李明皇 今天解决的进度 部分数据传递和使用逻辑测试 林翔 今天解决的进度 服务器端查看个人发布的action,修改已发布消息状态的action,仍在尝试使用第三方云存储功能保存图片 孙敏铭 ...

  2. 201621123043 《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 泛型的定义: 泛型,即"参数化类型".一提到参数,最熟悉的就是定义方法时有形参,然后调用此 ...

  3. 你考虑清楚了吗就决定用 Bootstrap ?

    近年来,在前端项目中, Bootstrap 已经成为了一个非常受欢迎的工具. Bootstrap 的确有很多优点,然而,如果你的团队中恰好有一个专职的前端工程师.那我推荐你们不要使用 Bootstra ...

  4. docker实践

    我的docker 学习笔记2   ps axf docker run -d cyf:sshd /usr/sbin -D   docker  ps docker-enter.sh 686 ps axf ...

  5. python入门(12)dict

    python入门(12)dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. 举个例 ...

  6. OAuth2.0学习(1-6)授权方式3-密码模式(Resource Owner Password Credentials Grant)

    授权方式3-密码模式(Resource Owner Password Credentials Grant) 密码模式(Resource Owner Password Credentials Grant ...

  7. python实现:最长子字符串

    给定一个字符串 s 和正整数 n,请使用你熟悉的编程语言输出 s 中包含不超过 n 种字符的最长子串,如 s="uabbcadbaef",n=4 时应该输出 "abbca ...

  8. Python之编码

    一.Python2与Python3的区别 1.从宏观上考虑,Python2重复代码太多,错误率高,不够规范.Python崇尚的是语言简洁.优美.清晰.Python3更加规范,重复代码少: 2.Pyth ...

  9. Windows10+Docker搭建分布式Redis集群(一)

    摘要,Docker for Windows 仅支持专业版 目录 第一步:检查系统支持虚拟化 第二步:下载Docker对应版本 第三步:配置镜像加速 第一步:检查系统是否支持虚拟化 Docker前提是需 ...

  10. python Django注册页面显示头像

    python Django注册页面显示头像(views) def register(request): ''' 注册 :param request: :return: ''' if request.m ...