题目描述

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

输入输出格式

输入格式:

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

输出格式:

每次的方法数

输入输出样例

输入样例#1:

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
输出样例#1:

4
27

说明

di,s<=100000

tot<=1000

题解:

一开始认为要求出一个4元方程的解的个数,用容斥求出所有GCD(a,b,c,d)|si的解

但时间复杂度太高,且条件限制不好做。

后面看到一种解法:

用dp求f[i]为钱数为i时的方案总数

显然f[i]=signma(f[i-c[j]])

复杂度为O(4*s)

再用容斥原理求出所有方案,减去1超出限制,再减去2超限,还有3和4。再加上1,2超限.....

i超出限制的方案为f[si-(d[j]+1)*c[j]]

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long c[],d[],tot;
long long f[],ans;
int main()
{long long i,j,s;
cin>>c[]>>c[]>>c[]>>c[]>>tot;
f[]=;
for (i=;i<=;i++)
for (j=c[i];j<=;j++)
{
f[j]+=f[j-c[i]];
}
for (i=;i<=tot;i++)
{
for (j=;j<=;j++)
scanf("%I64d",&d[j]);
scanf("%I64d",&s);
ans=f[s];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]];
if ((d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]];
if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]<=s)
ans-=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]]; if ((d[]+)*c[]+(d[]+)*c[]+(d[]+)*c[]+(d[]+)*d[]<=s)
ans+=f[s-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*c[]-(d[]+)*d[]];
cout<<ans<<endl;
}
}

[HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  6. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  7. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  8. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  9. 【BZOJ1042】[HAOI2008]硬币购物 容斥

    [BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值 ...

  10. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

随机推荐

  1. PTA題目的處理(一)

    **題目1:A乘B** **實驗代碼** #include <stdio.h> #include <stdlib.h> int main() { signed int a,b; ...

  2. Ubuntu下tomcat或eclipse启动提示没有java环境问题

    tomcat和eclipse默认使用了openjdk,通过压缩包安装的jdk无法被识别,通过修改tomcat/bin下的catalina.sh添加jdk和jre路径即可 sudo gedit cata ...

  3. tableView//collectionView加载时的动画

    - (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView cellForItemAtIndexPath:( ...

  4. DML数据操作语言之查询(一)

    1.select语句基础 基本语句格式:  select <列名>,.... from <表名>; select子句中列举出希望从表中查询出的列的名称,from子句则指定了选取 ...

  5. Codeforces 837E. Vasya's Function

    http://codeforces.com/problemset/problem/837/E   题意: f(a, 0) = 0; f(a, b) = 1 + f(a, b - gcd(a, b)) ...

  6. 请求方式:request和 get、post、put

    angular 的 http 多了 Request, Headers, Response ,这些都是游览器的"新特性" Fetch API. Fetch API 和以前的 xmlh ...

  7. oracle中求1到100之间的质数和

    declare i number:=1; j number:=0; sum1 number:=0;begin while(i<100) loop i:=i+1; j:=2; while(mod( ...

  8. Vue框架

    Vue框架 环境: windows python3.6.2 Vue的cdn: <script src="https://cdn.jsdelivr.net/npm/vue"&g ...

  9. kafka_2.12-1.1.0 生产与消费java实现示例

    环境准备: 1)需要在maven工程中引入依赖: <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka --> &l ...

  10. Spark测试代码

    测试代码: import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.hive.HiveContext ...