[BZOJ]1079 着色方案(SCOI2008)
相邻色块不同的着色方案,似乎这道题已经见过3个版本了。
Description
有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两个相邻木块颜色不同的着色方案。
Input
第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。
Output
输出一个整数,即方案总数模1,000,000,007的结果。
Sample Input
3
1 2 3
Sample Output
10
HINT
1 <= k <= 15,,1 <= ci <= 5。
Solution
k和ci都这么小,状压肯定没跑了。
如果你把k和ci的数据范围换一换,你应该会很容易地设计出状态吧。
我们先试着从5^15的状态表示法入手,看看有什么可改进的地方。
你会发现有很多状态本质上是一样的,颜色之间其实是没有区别的。
例如七种颜色的数量{1,4,3,2,2,1,2}和{1,2,3,2,4,2,1}排序后都是{1,1,2,2,2,3,4}。
所以我们就试着把状态压一压,状态表示为当前每种数量的颜色有多少种。
这样就状态又变成15^5啦,科学得不要不要的。
具体状态为f[i][j][k]表示已经涂了i格,状态为j,最后一格涂的是在当前状态中数量为k的颜色,转移自己看着办吧。
时间复杂度O(n*k^ci*ci^2),记忆化搜索似乎会省掉那个n?(n=Σci)
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MN 1100005
#define mod 1000000007
using namespace std;
int m,n,S;
int g[],ys[],f[][MN][],q[][MN],tp[];
bool u[MN]; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} inline void rw(int &x,int y) {x+=y; if (x>=mod) x-=mod;} int main()
{
register int x,i,j,k,l,lg,rg,gs;
for (m=read();m--;) ++g[x=read()],n+=x;
for (ys[]=,i=;i<=;++i) ys[i]=ys[i-]<<;
for (i=;i<=;++i) S+=g[i]*ys[i];
for (f[][q[][tp[]=]=S][]=,lg=,rg=,i=;i<n;++i,swap(lg,rg))
{
tp[rg]=;
for (j=;j<=tp[lg];++j) if (!u[q[lg][j]])
for (u[q[lg][j]]=true,k=;k<;f[lg][q[lg][j]][k++]=) if (f[lg][q[lg][j]][k])
for (x=q[lg][j],l=;l;x%=ys[l--]) if (gs=x/ys[l])
if (k!=l)
rw(f[rg][q[lg][j]-ys[l]+ys[l-]][l-],1LL*f[lg][q[lg][j]][k]*gs%mod),
q[rg][++tp[rg]]=q[lg][j]-ys[l]+ys[l-];
else if (gs>)
rw(f[rg][q[lg][j]-ys[l]+ys[l-]][l-],1LL*f[lg][q[lg][j]][k]*(gs-)%mod),
q[rg][++tp[rg]]=q[lg][j]-ys[l]+ys[l-];
for (j=;j<=tp[lg];++j) u[q[lg][j]]=false;
}
printf("%d",f[lg][][]);
}
Last Word
世界上还有比恶意散播题解的更毒的人吗?
[BZOJ]1079 着色方案(SCOI2008)的更多相关文章
- Bzoj 1079 着色方案 题解
1079: [SCOI2008]着色方案 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2237 Solved: 1361[Submit][Stat ...
- bzoj 1079 着色方案
题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...
- BZOJ 1079 着色方案(DP)
如果把当前格子涂什么颜色当做转移的话,状态则是每个格子的颜色数还剩多少,以及上一步用了什么颜色,这样的状态量显然是5^15.不可取. 如果把当前格子涂颜色数还剩几个的颜色作为转移的话,状态则是每个格子 ...
- BZOJ 1079: [SCOI2008]着色方案 记忆化搜索
1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- bzoj 1079: [SCOI2008]着色方案 DP
1079: [SCOI2008]着色方案 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 803 Solved: 512[Submit][Status ...
- BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)
BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...
- 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...
- 【BZOJ 1079】[SCOI2008]着色方案
Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...
- [BZOJ 1079][SCOI 2008]着色方案
1079: [SCOI2008]着色方案 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2237 Solved: 1361[Submit][Stat ...
随机推荐
- Python 3.* print 出现SyntaxError: invalid syntax
很简单,不知道为啥,据说是3.0以后的print都改为了print(); 例如 a=1 print a 上边出错 输入 a=1 print(a) 就正确了
- codves 3044 矩形面积求并
codves 3044 矩形面积求并 题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Desc ...
- 浅谈 ThreadLocal
有时,你希望将每个线程数据(如用户ID)与线程关联起来.尽管可以使用局部变量来完成此任务,但只能在本地变量存在时才这样做.也可以使用一个实例属性来保存这些数据,但是这样就必须处理线程同步问题.幸运的是 ...
- prop attr 到底哪里不一样?
好吧 首先承认错误 说好的每天进行一次只是总结 但是我没坚持住 准确的来说 我并没有每天会学到了东西 但是 我一直在持续努力着 以后应该不会每天都写 但是自己觉得有用的 或者想加强记忆的 可 ...
- vue+mint-ui的微博页面(支持评论@添加表情等)
github地址 https://github.com/KyrieZbw/Sneakers (如果觉得不错就给个小星星) 预览地址 页面展示 技术栈 vue2 + vuex + vue-router ...
- Python内置函数(34)——filter
英文文档: filter(function, iterable) Construct an iterator from those elements of iterable for which fun ...
- ELK学习总结(3-1)elk的基本查询
基本查询:内置条件 组合查询:组合基本查询 过滤:查询同时,通过filter筛选数据 准备工作 GET /library/books/_mget { "ids":["1 ...
- Spring Security入门(2-3)Spring Security 的运行原理 4 - 自定义登录方法和页面
参考链接,多谢作者: http://blog.csdn.net/lee353086/article/details/52586916 http元素下的form-login元素是用来定义表单登录信息的. ...
- 分布式服务框架HSF
最近在读阿里巴巴中台战略思想与架构这本书,so和大家分享一些我get到的东东. HSF是阿里巴巴内部的分布式服务框架,这个大家都很熟悉了,先上一张HSF的工作原理图: 这个图说明了HSF框架中每个组件 ...
- C#微信公众号——本地调试
测试微信,因为要与微信服务器进行交互,所以必须要是外网地址,实现本地调试首先需要解决的问题就是外网问题,这个我前面的文章有介绍,这里就不再详细介绍了,网址http://www.cnblogs.com/ ...