题面

没有权限号的可以去LOJ

Sol

大家都知道,\(LCT\)上有许多实边和虚边

实边就是每棵\(Splay\)上的既认父亲又认儿子的边

虚边就是\(Splay\)和\(Splay\)之间只认父亲的的边

那么每个点就有它的虚儿子和实儿子,实际上虚儿子才是它在\(LCT\)维护的树上的真正的儿子

当你\(Access(x)\)时,\(x\)的虚儿子加上它自己就是它子树的信息

所以我们要维护每个点虚儿子的信息和LCT子树的信息(也就是虚儿子+实儿子+自己)

怎么维护?

你会发现这只会在\(Access\)和\(Link\)操作中改变

\(Access\)时,这个点的实儿子和虚儿子会有改变,那么维护的虚儿子的信息就减去原来的加上现在的就好了

\(Link\)时,这个点多了一个虚儿子,直接加上就好,但是这个点的祖先都要更改,不好操作,直接把它也\(Makeroot\)就好

LCT子树的信息可以直接写在\(Update\)内

然后这个题就是水题了

询问就是两边\(size\)的乘积

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define ls ch[0][x]
# define rs ch[1][x]
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 10); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, Q, ch[2][_], fa[_], size[_], sum[_], rev[_], S[_]; IL bool Son(RG int x){ return ch[1][fa[x]] == x; } IL bool Isroot(RG int x){ return ch[0][fa[x]] != x && ch[1][fa[x]] != x; } IL void Reverse(RG int x){ if(!x) return; swap(ls, rs); rev[x] ^= 1; } IL void Update(RG int x){ sum[x] = sum[ls] + sum[rs] + size[x] + 1; } IL void Pushdown(RG int x){ if(!rev[x]) return; Reverse(ls); Reverse(rs); rev[x] = 0; } IL void Rotate(RG int x){
RG int y = fa[x], z = fa[y], c = Son(x);
if(!Isroot(y)) ch[Son(y)][z] = x; fa[x] = z;
ch[c][y] = ch[!c][x]; fa[ch[c][y]] = y;
ch[!c][x] = y; fa[y] = x; Update(y);
} IL void Splay(RG int x){
S[S[0] = 1] = x;
for(RG int y = x; !Isroot(y); y = fa[y]) S[++S[0]] = fa[y];
while(S[0]) Pushdown(S[S[0]--]);
for(RG int y = fa[x]; !Isroot(x); Rotate(x), y = fa[x])
if(!Isroot(y)) Son(x) ^ Son(y) ? Rotate(x) : Rotate(y);
Update(x);
} IL void Access(RG int x){
for(RG int y = 0; x; y = x, x = fa[x]) Splay(x), size[x] += sum[ch[1][x]] - sum[y], ch[1][x] = y, Update(x);
} IL void Makeroot(RG int x){ Access(x); Splay(x); Reverse(x); } IL void Link(RG int x, RG int y){ Makeroot(x); Makeroot(y); fa[x] = y; size[y] += sum[x]; Update(y); } IL void Split(RG int x, RG int y){ Makeroot(x); Access(y); Splay(y); } int main(RG int argc, RG char* argv[]){
n = Read(); Q = Read();
while(Q--){
RG char op; scanf(" %c", &op); RG int x = Read(), y = Read();
if(op == 'A') Link(x, y);
else Split(x, y), printf("%lld\n", 1LL * sum[x] * (sum[y] - sum[x]));
}
return 0;
}

LCT维护子树信息(BZOJ4530:[BJOI2014]大融合)的更多相关文章

  1. 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...

  2. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  3. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  4. LCT维护子树信息

    有些题目,在要求支持link-cut之外,还会在线询问某个子树的信息.LCT可以通过维护虚边信息完成这个操作. 对于LCT上每个节点,维护两个两sz和si,后者维护该点所有虚儿子的信息,前者维护该点的 ...

  5. [bzoj4530][Bjoi2014]大融合_LCT

    大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数 ...

  6. 【uoj#207】共价大爷游长沙 随机化+LCT维护子树信息

    题目描述 给出一棵树和一个点对集合S,多次改变这棵树的形态.在集合中加入或删除点对,或询问集合内的每组点对之间的路径是否都经过某条给定边. 输入 输入的第一行包含一个整数 id,表示测试数据编号,如第 ...

  7. 【bzoj3510】首都 LCT维护子树信息(+启发式合并)

    题目描述 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失, ...

  8. 【BZOJ3510】首都 LCT维护子树信息+启发式合并

    [BZOJ3510]首都 Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打 ...

  9. bzoj3510 首都 LCT 维护子树信息+树的重心

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3510 题解 首先每一个连通块的首都根据定义,显然就是直径. 然后考虑直径的几个性质: 定义:删 ...

随机推荐

  1. Eclipse Java,debug模式无法调试,调试按钮不可用时解决办法

    经常出现debug模式进入后,debug的几个按钮置灰,F5,6,8,没有任何反应时,这样操作: 退出 Eclipse.打开 Eclipse 目录下的 configuration 下的 org.ecl ...

  2. ipset批量配置iptables

    简介: ipset是iptables的扩展,允许你创建匹配整个地址sets(地址集合)的规则.而不像普通的iptables链是线性的存储和过滤,ip集合存储在带索引的数据结构中,这种集合比较大也可以进 ...

  3. Java集合中的Map接口

    jdk1.8.0_144 Map是Java三种集合中的一种位于java.util包中,Map作为一个接口存在定义了这种数据结构的一些基础操作,它的最终实现类有很多:HashMap.TreeMap.So ...

  4. Java经典编程题50道之三十八

    编写一个函数:输入n为偶数时,调用函数求1/2+1/4+...+1/n:当输入n为奇数时,调用函数1/1+1/3+...+1/n. public class Example38 {    public ...

  5. 用Open SSH生成公钥和私钥(Win)

    也可以使用 dsa 加密算法进行加密,命令如下: ssh-keygen -t dsa

  6. PHP文件头BOM头问题

    前几天我们公司服务器出现了一个离奇的问题,服务器与本地文件代码完全一致,本地运行正常,到了测试环境服务器之后,各种问题一个又一个浮现,先是后台验证码不显示,以为是session写入失败,又是怀疑gd库 ...

  7. the c programing language 学习过程3

    ControlFlow  控制流 specify 指定 compound statement 复合语句 cryptic有隐含意义的 ambiguity歧义 robust稳健 disintegratio ...

  8. SCU 4438 Censor KMP/Hash

    题意:给定一个模式串和文本,要求删除所有模式串.可能删除后会形成新的模式串,必须全部删除. 思路1:kmp算法求得失配数组,用一个match数组记录文本串中第i字符和未删除的字符能匹配模式串的长度.这 ...

  9. Docker系列一:Docker基本概念及指令介绍

    1. Docker是什么? Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用 ...

  10. python 下划线--完美解释

    Python 用下划线作为变量前缀和后缀指定特殊变量 _xxx 不能用'from module import *'导入 __xxx__ 系统定义名字 __xxx 类中的私有变量名 核心风格:避免用下划 ...