Python实现常用的数据结构
Python中的数据结构
#巧用Python列表特性实现特定数据结构
#栈实现
stack = []
stack.push(x)
stack.pop()
stack[-1]
#队列实现
from collections import deque
queue = deque()
#单向队列
queue.append(x)
queue.popleft()
#双向队列
queue.append(x)
queue.popleft()
queue.appendleft(x)
queue.pop()
#环形队列
#初始
dqueue = []
rear = 0
front = 0
#添加一个数据
front = (front + 1 ) % MaxSize
#一个数据出队
rear = (rear + 1 ) % MaxSize
#空队条件
rear == front
#满队条件
(rear + 1 ) % MaxSize == front
#巧用Python类特性实现特定数据结构
#链表实现
class Node(object):
def __init__(self,item=None):
self.item = item
self.next = None
def main():
head = Node(1)
b = Node(2)
head.next = b
head -> b -> None
#head为链表首部,有无数据都可以
#遍历链表
def traversal(head):
currNode = head
while currNode is not None:
print(currNode.item)
currNode = currNode.next
#链表的插入、删除
#插入
#p.next = currNode.next
#currNode.next = p
#删除
#currNode.next = p
#currNode.next = currNode.next.next
#del p
#双向链表
class Node(object):
def __init__(self,item=None):
self.item = itme
self.next = None
self.prev = None
#插入
#p.next = currNode.next
#currNode.next.prev = p
#p.prev = currNode
#currNode.next = p
#删除
#p = currNode.next
#currNode.next = p.next
#p.next.prev = currNode
#del p
#链表和列表的效率分析
#按元素查找时间复杂度都为O(n)
#按下标查找链表时间复杂度为O(n),列表为O(1)
#在某元素后插入数据链表时间复杂度为O(1),列表的时间复杂度为O(n)
#删除某元素链表时间复杂度为O(n),列表时间复杂度为O(1)
#散列表(Hash表)实现
#它是一种线性存储的表结构
#首先根据关键字k,进过某Hash函数,获得一个索引值
#然后将该关键字存储到索引值所在的位置
#这也是集合的存储原理
#对于字典也是类似的
#字典是对每一个key求索引值,索引值对应的位置存放相应的value
#问题一:
#索引值重复
#解决一:线性表每个位置采用链表存储,相同索引值得关键字,依次链接起来(拉链法
#解决二:通过哈希冲突函数得到新的地址(开放地址法)
#利用栈解决迷宫问题
maze = [
[1,1,1,1,1,1,1,1,1,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,0,0,1,1,0,0,1],
[1,0,1,1,1,0,0,0,0,1],
[1,0,0,0,1,0,0,0,0,1],
[1,0,1,0,0,0,1,0,0,1],
[1,0,1,1,1,0,1,1,0,1],
[1,1,0,0,0,0,0,1,0,1],
[1,1,1,1,1,1,1,1,1,1]
] dirs = [lambda x, y: (x + 1, y),
lambda x, y: (x - 1, y),
lambda x, y: (x, y - 1),
lambda x, y: (x, y + 1)] def mpath(x1, y1, x2, y2):
stack = []
stack.append((x1, y1))
while len(stack) > 0:
curNode = stack[-1]
if curNode[0] == x2 and curNode[1] == y2:
#到达终点
for p in stack:
print(p)
return True
for dir in dirs:
nextNode = dir(curNode[0], curNode[1])
if maze[nextNode[0]][nextNode[1]] == 0:
#找到了下一个
stack.append(nextNode)
maze[nextNode[0]][nextNode[1]] = -1 # 标记为已经走过,防止死循环
break
else:#四个方向都没找到
maze[curNode[0]][curNode[1]] = -1 # 死路一条,下次别走了
stack.pop() #回溯
print("没有路")
return False mpath(1,1,8,8)
#利用队列解决迷宫问题
from collections import deque mg = [
[1,1,1,1,1,1,1,1,1,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,0,0,1,1,0,0,1],
[1,0,1,1,1,0,0,0,0,1],
[1,0,0,0,1,0,0,0,0,1],
[1,0,1,0,0,0,1,0,0,1],
[1,0,1,1,1,0,1,1,0,1],
[1,1,0,0,0,0,0,1,0,1],
[1,1,1,1,1,1,1,1,1,1]
] dirs = [lambda x, y: (x + 1, y),
lambda x, y: (x - 1, y),
lambda x, y: (x, y - 1),
lambda x, y: (x, y + 1)] def print_p(path):
curNode = path[-1]
realpath = []
print('迷宫路径为:')
while curNode[2] != -1:
realpath.append(curNode[0:2])
curNode = path[curNode[2]]
realpath.append(curNode[0:2])
realpath.reverse()
print(realpath) def mgpath(x1, y1, x2, y2):
queue = deque()
path = []
queue.append((x1, y1, -1))
while len(queue) > 0:
curNode = queue.popleft()
path.append(curNode)
if curNode[0] == x2 and curNode[1] == y2:
#到达终点
print_p(path)
return True
for dir in dirs:
nextNode = dir(curNode[0], curNode[1])
if mg[nextNode[0]][nextNode[1]] == 0: # 找到下一个方块
queue.append((*nextNode, len(path) - 1))
mg[nextNode[0]][nextNode[1]] = -1 # 标记为已经走过
return False mgpath(1,1,8,8)
Python实现常用的数据结构的更多相关文章
- 第二章 python中重要的数据结构(下)
二.元组(tuple):不可变序列 跟list一样,也是一种序列,唯一不同的是,元组元素不能被修改,通常用(, ,)表示元组,也可以不加括号. #创建元组 >>> 1,2,3 (1, ...
- Python实现常用排序算法
Python实现常用排序算法 冒泡排序 思路: 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完 ...
- 【转】python 历险记(四)— python 中常用的 json 操作
[转]python 历险记(四)— python 中常用的 json 操作 目录 引言 基础知识 什么是 JSON? JSON 的语法 JSON 对象有哪些特点? JSON 数组有哪些特点? 什么是编 ...
- Python中的高级数据结构详解
这篇文章主要介绍了Python中的高级数据结构详解,本文讲解了Collection.Array.Heapq.Bisect.Weakref.Copy以及Pprint这些数据结构的用法,需要的朋友可以参考 ...
- python学习笔记五——数据结构
4 . python的数据结构 数据结构是用来存储数据的逻辑结构,合理使用数据结构才能编写出优秀的代码.python提供的几种内置数据结构——元组.列表.字典和序列.内置数据结构是Python语言的精 ...
- python 历险记(四)— python 中常用的 json 操作
目录 引言 基础知识 什么是 JSON? JSON 的语法 JSON 对象有哪些特点? JSON 数组有哪些特点? 什么是编码和解码? 常用的 json 操作有哪些? json 操作需要什么库? 如何 ...
- Python中的高级数据结构(转)
add by zhj: Python中的高级数据结构 数据结构 数据结构的概念很好理解,就是用来将数据组织在一起的结构.换句话说,数据结构是用来存储一系列关联数据的东西.在Python中有四种内建的数 ...
- python算法常用技巧与内置库
python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...
- python数据分析03Python的数据结构、函数和文件
我们会从Python最基础的数据结构开始:元组.列表.字典和集合.然后会讨论创建你自己的.可重复使用的Python函数.最后,会学习Python的文件对象,以及如何与本地硬盘交互. 3.1 数据结构和 ...
随机推荐
- BZOJ 2653: middle [主席树 中位数]
传送门 题意: 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右 ...
- VS2012如何调试JS
下面的操作步骤描述了怎样利用vs.net中的调试器来调试javascript: 1,首先,要让你的ie允许调试脚本,具体步骤如下: 打开ie->工具菜单->inter选项->高 ...
- CentOS 7 使用iptables防火墙
# 停止firewalld服务 systemctl stop firewalld systemctl mask firewalld # 安装iptables-services yum install ...
- Jetty容器
♣Jetty和Tomcat的区别 ♣Jetty下载.安装 ♣eclipse安装jetty插件 ♣第一个jetty测试(maven+jetty) 1.Jetty和Tomcat的区别 Jetty 是一 ...
- easyui datagrid 右边框被隐藏
问题前: 如下图: 解决思路: 待文档加载完成后再执行dategrid函数 $(function () { $("#tt").datagrid({ //....... }); }) ...
- Java经典编程题50道之四
将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. public class Example04 { public static void main(String[] args ...
- [翻译] 编写高性能 .NET 代码--第二章 GC -- 将长生命周期对象和大对象池化
将长生命周期对象和大对象池化 请记住最开始说的原则:对象要么立即回收要么一直存在.它们要么在0代被回收,要么在2代里一直存在.有些对象本质是静态的,生命周期从它们被创建开始,到程序停止才会结束.其它对 ...
- JavaScript那些事
1.定义静态常量: const C=1; 该常量不能变化的. 2.在if判断中如果是两个变量比较js会将一个字符和一个数字比较的话,会将字符转换成数字然后在对这两个进行对比: var num= ...
- SmileyFace——基于OpenCV的人脸人眼检测、面部识别程序
项目地址 https://github.com/guoyaohua/SmileyFace 开发环境 Visual Studio 2010 MFC + OpenCV 功能描述 静态图像人脸检测 视频人脸 ...
- spring boot actuator 简单使用
spring boot admin + spring boot actuator + erueka 微服务监控 简单的spring boot actuator 使用 POM <dependenc ...