Python实现常用的数据结构
Python中的数据结构
#巧用Python列表特性实现特定数据结构
#栈实现
stack = []
stack.push(x)
stack.pop()
stack[-1]
#队列实现
from collections import deque
queue = deque()
#单向队列
queue.append(x)
queue.popleft()
#双向队列
queue.append(x)
queue.popleft()
queue.appendleft(x)
queue.pop()
#环形队列
#初始
dqueue = []
rear = 0
front = 0
#添加一个数据
front = (front + 1 ) % MaxSize
#一个数据出队
rear = (rear + 1 ) % MaxSize
#空队条件
rear == front
#满队条件
(rear + 1 ) % MaxSize == front
#巧用Python类特性实现特定数据结构
#链表实现
class Node(object):
def __init__(self,item=None):
self.item = item
self.next = None
def main():
head = Node(1)
b = Node(2)
head.next = b
head -> b -> None
#head为链表首部,有无数据都可以
#遍历链表
def traversal(head):
currNode = head
while currNode is not None:
print(currNode.item)
currNode = currNode.next
#链表的插入、删除
#插入
#p.next = currNode.next
#currNode.next = p
#删除
#currNode.next = p
#currNode.next = currNode.next.next
#del p
#双向链表
class Node(object):
def __init__(self,item=None):
self.item = itme
self.next = None
self.prev = None
#插入
#p.next = currNode.next
#currNode.next.prev = p
#p.prev = currNode
#currNode.next = p
#删除
#p = currNode.next
#currNode.next = p.next
#p.next.prev = currNode
#del p
#链表和列表的效率分析
#按元素查找时间复杂度都为O(n)
#按下标查找链表时间复杂度为O(n),列表为O(1)
#在某元素后插入数据链表时间复杂度为O(1),列表的时间复杂度为O(n)
#删除某元素链表时间复杂度为O(n),列表时间复杂度为O(1)
#散列表(Hash表)实现
#它是一种线性存储的表结构
#首先根据关键字k,进过某Hash函数,获得一个索引值
#然后将该关键字存储到索引值所在的位置
#这也是集合的存储原理
#对于字典也是类似的
#字典是对每一个key求索引值,索引值对应的位置存放相应的value
#问题一:
#索引值重复
#解决一:线性表每个位置采用链表存储,相同索引值得关键字,依次链接起来(拉链法
#解决二:通过哈希冲突函数得到新的地址(开放地址法)
#利用栈解决迷宫问题
maze = [
[1,1,1,1,1,1,1,1,1,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,0,0,1,1,0,0,1],
[1,0,1,1,1,0,0,0,0,1],
[1,0,0,0,1,0,0,0,0,1],
[1,0,1,0,0,0,1,0,0,1],
[1,0,1,1,1,0,1,1,0,1],
[1,1,0,0,0,0,0,1,0,1],
[1,1,1,1,1,1,1,1,1,1]
] dirs = [lambda x, y: (x + 1, y),
lambda x, y: (x - 1, y),
lambda x, y: (x, y - 1),
lambda x, y: (x, y + 1)] def mpath(x1, y1, x2, y2):
stack = []
stack.append((x1, y1))
while len(stack) > 0:
curNode = stack[-1]
if curNode[0] == x2 and curNode[1] == y2:
#到达终点
for p in stack:
print(p)
return True
for dir in dirs:
nextNode = dir(curNode[0], curNode[1])
if maze[nextNode[0]][nextNode[1]] == 0:
#找到了下一个
stack.append(nextNode)
maze[nextNode[0]][nextNode[1]] = -1 # 标记为已经走过,防止死循环
break
else:#四个方向都没找到
maze[curNode[0]][curNode[1]] = -1 # 死路一条,下次别走了
stack.pop() #回溯
print("没有路")
return False mpath(1,1,8,8)
#利用队列解决迷宫问题
from collections import deque mg = [
[1,1,1,1,1,1,1,1,1,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,1,0,0,0,1,0,1],
[1,0,0,0,0,1,1,0,0,1],
[1,0,1,1,1,0,0,0,0,1],
[1,0,0,0,1,0,0,0,0,1],
[1,0,1,0,0,0,1,0,0,1],
[1,0,1,1,1,0,1,1,0,1],
[1,1,0,0,0,0,0,1,0,1],
[1,1,1,1,1,1,1,1,1,1]
] dirs = [lambda x, y: (x + 1, y),
lambda x, y: (x - 1, y),
lambda x, y: (x, y - 1),
lambda x, y: (x, y + 1)] def print_p(path):
curNode = path[-1]
realpath = []
print('迷宫路径为:')
while curNode[2] != -1:
realpath.append(curNode[0:2])
curNode = path[curNode[2]]
realpath.append(curNode[0:2])
realpath.reverse()
print(realpath) def mgpath(x1, y1, x2, y2):
queue = deque()
path = []
queue.append((x1, y1, -1))
while len(queue) > 0:
curNode = queue.popleft()
path.append(curNode)
if curNode[0] == x2 and curNode[1] == y2:
#到达终点
print_p(path)
return True
for dir in dirs:
nextNode = dir(curNode[0], curNode[1])
if mg[nextNode[0]][nextNode[1]] == 0: # 找到下一个方块
queue.append((*nextNode, len(path) - 1))
mg[nextNode[0]][nextNode[1]] = -1 # 标记为已经走过
return False mgpath(1,1,8,8)
Python实现常用的数据结构的更多相关文章
- 第二章 python中重要的数据结构(下)
二.元组(tuple):不可变序列 跟list一样,也是一种序列,唯一不同的是,元组元素不能被修改,通常用(, ,)表示元组,也可以不加括号. #创建元组 >>> 1,2,3 (1, ...
- Python实现常用排序算法
Python实现常用排序算法 冒泡排序 思路: 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完 ...
- 【转】python 历险记(四)— python 中常用的 json 操作
[转]python 历险记(四)— python 中常用的 json 操作 目录 引言 基础知识 什么是 JSON? JSON 的语法 JSON 对象有哪些特点? JSON 数组有哪些特点? 什么是编 ...
- Python中的高级数据结构详解
这篇文章主要介绍了Python中的高级数据结构详解,本文讲解了Collection.Array.Heapq.Bisect.Weakref.Copy以及Pprint这些数据结构的用法,需要的朋友可以参考 ...
- python学习笔记五——数据结构
4 . python的数据结构 数据结构是用来存储数据的逻辑结构,合理使用数据结构才能编写出优秀的代码.python提供的几种内置数据结构——元组.列表.字典和序列.内置数据结构是Python语言的精 ...
- python 历险记(四)— python 中常用的 json 操作
目录 引言 基础知识 什么是 JSON? JSON 的语法 JSON 对象有哪些特点? JSON 数组有哪些特点? 什么是编码和解码? 常用的 json 操作有哪些? json 操作需要什么库? 如何 ...
- Python中的高级数据结构(转)
add by zhj: Python中的高级数据结构 数据结构 数据结构的概念很好理解,就是用来将数据组织在一起的结构.换句话说,数据结构是用来存储一系列关联数据的东西.在Python中有四种内建的数 ...
- python算法常用技巧与内置库
python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...
- python数据分析03Python的数据结构、函数和文件
我们会从Python最基础的数据结构开始:元组.列表.字典和集合.然后会讨论创建你自己的.可重复使用的Python函数.最后,会学习Python的文件对象,以及如何与本地硬盘交互. 3.1 数据结构和 ...
随机推荐
- require和require_once的区别
require 的使用方法如 require("./inc.php"); .通常放在 PHP 程式的最前面,PHP 程式在执行前,就会先读入 require 所指定引入的档案,使它 ...
- 洛谷 [P2146] 软件包管理器
树剖 将一个软件是否安装,看作是sum数组的0或1,对于每个操作前后sum[1]的变化,就是所求 #include <iostream> #include <cstdio> # ...
- BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...
- 夏令营讲课内容整理 Day 6 Part 1.
Day6讲了三个大部分的内容. 1.STL 2.初等数论 3.倍增 Part1主要与STL有关. 1.概述 STL的英文全名叫Standard Template Library,翻译成中文就叫标准 ...
- 一步一步从原理跟我学邮件收取及发送 11.完整的发送示例与go语言
经过了这个系列的前几篇文章的学习,现在要写出一个完整的 smtp 邮件发送过程简直易如反掌. 例如我们可以轻松地写出以下的纯 C 语言代码(引用的其他C语言文件请看文末的 github 地址): ...
- oneNote总结
22.添加附加文件删除后,文件大小没有发生改变的(优化文件和清空回收站)
- 阿里云pai项目使用说明
PAI项目创建方法 购买region 进入MaxCompute,购买相应region,目前机器学习只支持华东2(GPU公测免费)以及华北2(GPU计划收费),注意选择"按量后付费" ...
- mysql 获取上个月,这个月的第一天或最后一天
/*上个月今天的当前时间*/select date_sub(now(),interval 1 month) /*上个月今天的当前时间(时间戳)*/select UNIX_TIMESTAMP(date_ ...
- VS2015安装时问题汇总
安装VS2015遇到teamexplorer严重错误 在控制台管理员权限执行: fsutil behavior set SymlinkEvaluation L2L:1 L2R:1 R2L:1 R2R: ...
- 学习资料分享:Python能做什么?
最近一直忙着研究学习Python,很久没更新博客了,整理了一些Python学习资料,和大家分享一下!每天更新一篇~ 一.Python 特点 1.易于学习:Python有相对较少的关键字,结构简单,和一 ...