大数据处理的三种框架:Storm,Spark和Samza
许多分布式计算系统都可以实时或接近实时地处理大数据流。下面对三种Apache框架分别进行简单介绍,然后尝试快速、高度概述其异同。
Apache Storm
在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology)。这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行。一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去;而bolt则负责转换这些数据流,在bolt中可以完成计算、过滤等操作,bolt自身也可以随机将数据发送给其他bolt。由spout发射出的tuple是不可变数组,对应着固定的键值对。
Apache Spark
Spark Streaming是核心Spark API的一个扩展,它并不会像Storm那样一次一个地处理数据流,而是在处理前按时间间隔预先将其切分为一段一段的批处理作业。Spark针对持续性数据流的抽象称为DStream(DiscretizedStream),一个DStream是一个微批处理(micro-batching)的RDD(弹性分布式数据集);而RDD则是一种分布式数据集,能够以两种方式并行运作,分别是任意函数和滑动窗口数据的转换。
Apache Samza
Samza处理数据流时,会分别按次处理每条收到的消息。Samza的流单位既不是元组,也不是Dstream,而是一条条消息。在Samza中,数据流被切分开来,每个部分都由一组只读消息的有序数列构成,而这些消息每条都有一个特定的ID(offset)。该系统还支持批处理,即逐次处理同一个数据流分区的多条消息。Samza的执行与数据流模块都是可插拔式的,尽管Samza的特色是依赖Hadoop的Yarn(另一种资源调度器)和Apache Kafka。
共同之处
以上三种实时计算系统都是开源的分布式系统,具有低延迟、可扩展和容错性诸多优点,它们的共同特色在于:允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行运行。此外,它们都提供了简单的API来简化底层实现的复杂程度。
三种框架的术语名词不同,但是其代表的概念十分相似:
对比图
下面表格总结了一些不同之处:
数据传递形式分为三大类:
- 最多一次(At-most-once):消息可能会丢失,这通常是最不理想的结果。
- 最少一次(At-least-once):消息可能会再次发送(没有丢失的情况,但是会产生冗余)。在许多用例中已经足够。
- 恰好一次(Exactly-once):每条消息都被发送过一次且仅仅一次(没有丢失,没有冗余)。这是最佳情况,尽管很难保证在所有用例中都实现。
另一个方面是状态管理:对状态的存储有不同的策略,Spark Streaming将数据写入分布式文件系统中(例如HDFS);Samza使用嵌入式键值存储;而在Storm中,或者将状态管理滚动至应用层面,或者使用更高层面的抽象Trident。
用例
这三种框架在处理连续性的大量实时数据时的表现均出色而高效,那么使用哪一种呢?选择时并没有什么硬性规定,最多就是几个指导方针。
如果你想要的是一个允许增量计算的高速事件处理系统,Storm会是最佳选择。它可以应对你在客户端等待结果的同时,进一步进行分布式计算的需求,使用开箱即用的分布式RPC(DRPC)就可以了。最后但同样重要的原因:Storm使用Apache Thrift,你可以用任何编程语言来编写拓扑结构。如果你需要状态持续,同时/或者达到恰好一次的传递效果,应当看看更高层面的Trdent API,它同时也提供了微批处理的方式。
使用Storm的公司有:Twitter,雅虎,Spotify还有The Weather Channel等。
说到微批处理,如果你必须有状态的计算,恰好一次的递送,并且不介意高延迟的话,那么可以考虑Spark Streaming,特别如果你还计划图形操作、机器学习或者访问SQL的话,Apache Spark的stack允许你将一些library与数据流相结合(Spark SQL,Mllib,GraphX),它们会提供便捷的一体化编程模型。尤其是数据流算法(例如:K均值流媒体)允许Spark实时决策的促进。
使用Spark的公司有:亚马逊,雅虎,NASA JPL,eBay还有百度等。
如果你有大量的状态需要处理,比如每个分区都有许多十亿位元组,那么可以选择Samza。由于Samza将存储与处理放在同一台机器上,在保持处理高效的同时,还不会额外载入内存。这种框架提供了灵活的可插拔API:它的默认execution、消息发送还有存储引擎操作都可以根据你的选择随时进行替换。此外,如果你有大量的数据流处理阶段,且分别来自不同代码库的不同团队,那么Samza的细颗粒工作特性会尤其适用,因为它们可以在影响最小化的前提下完成增加或移除的工作。
使用Samza的公司有:LinkedIn,Intuit,Metamarkets,Quantiply,Fortscale等。
结论
本文中我们只对这三种Apache框架进行了简单的了解,并未覆盖到这些框架中大量的功能与更多细微的差异。同时,文中这三种框架对比也是受到限制的,因为这些框架都在一直不断的发展,这一点是我们应当牢记的
大数据处理的三种框架:Storm,Spark和Samza的更多相关文章
- 流式大数据处理的三种框架:Storm,Spark和Samza
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的 ...
- [转载]流式大数据处理的三种框架:Storm,Spark和Samza
许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的 ...
- 国内常用的三种框架:ionic/mui/framework7对比
国内常用的三种框架:ionic/mui/framework7对比 原文连接:http://zhihu.com/question/19558750/answer/91179040
- Struts中的数据处理的三种方式
Struts中的数据处理的三种方式: public class DataAction extends ActionSupport{ @Override public String execute() ...
- 实时流Streaming大数据:Storm,Spark和Samza
当前有许多分布式计算系统能够实时处理大数据,这篇文章是对Apache的三个框架进行比较,试图提供一个快速的高屋建瓴地异同性总结. Apache Storm 在Storm中,你设计的实时计算图称为top ...
- java 分次读取大文件的三种方法
1. java 读取大文件的困难 java 读取文件的一般操作是将文件数据全部读取到内存中,然后再对数据进行操作.例如 Path path = Paths.get("file path&qu ...
- SSH三种框架及表示层、业务层和持久层的理解
Struts(表示层)+Spring(业务层)+Hibernate(持久层) SSH:Struts(表示层)+Spring(业务层)+Hibernate(持久层) Struts:Struts是一个表示 ...
- SSH三种框架及表示层、业务层和持久层的理解(转)
Struts(表示层)+Spring(业务层)+Hibernate(持久层) SSH:Struts(表示层)+Spring(业务层)+Hibernate(持久层) Struts:Struts是一个表示 ...
- Struts2中的数据处理的三种方式对比(Action中三种作用域request,session,application对象)
1:在Action中如何获得作用域(request,session,application)对象: 取得Map(键值对映射集)类型的requet,session,application; 对数据操作的 ...
随机推荐
- 浅谈最大流的Dinic算法
PART 1 什么是网络流 网络流(network-flows)是一种类比水流的解决问题方法,与线性规划密切相关.网络流的理论和应用在不断发展,出现了具有增益的流.多终端流.多商品流以及网络流的分解与 ...
- 记React+.NetCore API实现动态列导出
1.效果演示 2.用到的第三方类库 前端:React,Dva,Antd 后端:ASP.NET CORE,System.Linq.Dynamic.Core,EPPlus.Core 3.基本思路 第一:E ...
- Servlet第六篇【Session介绍、API、生命周期、应用、与Cookie区别】
什么是Session Session 是另一种记录浏览器状态的机制.不同的是Cookie保存在浏览器中,Session保存在服务器中.用户使用浏览器访问服务器的时候,服务器把用户的信息以某种的形式记录 ...
- php动态编译mysqli扩展
在源PHP安装文件中进入注意是你下载的php源文件软件包cd ./php-5.5.4/ext/mysqli注意要先确保/server/php/bin/php-config存在/server/php/b ...
- iOS-CoreText的那些事【电子书的那些事】
这段时间在搞电子书,把这些天出现的问题归总下,我还是希望电子书的格式包括返回的数据,可直观的反应出客户端想表达的内容:原生的体验还是比较好的,希望对coretext再深入. 1.判断点击的位置是否在某 ...
- ABP官方文档翻译 3.7 领域事件(事件总线)
领域事件(事件总线) 事件总线 注入IEventBus 获取默认实例 定义事件 预定义事件 处理异常 实体更改 触发事件 处理事件 处理基础事件 处理者异常 处理多个事件 注册处理者 自动 手动 取消 ...
- BZOJ 2502: 清理雪道 [最小流]
2502: 清理雪道 题意:任意点出发任意次每条边至少经过一次最小花费. 下界1,裸最小流.... #include <iostream> #include <cstdio> ...
- 引用MinGW生成的.dll.a后出现的问题
以前很少调用MinGW的运行时库,现在用到一个项目,用到了glib和gettext等. 遇到了一个问题,折腾了一个下午. gettext的运行时库之一是intl,MinGW只提供了.dll.a,于是参 ...
- jquery $(document).ready() 与window.onload的区别(转)
Jquery中$(document).ready()的作用类似于传统JavaScript中的window.onload方法,不过与window.onload方法还是有区别的. 1.执行时间 windo ...
- PhpStorm的破解 汉化
以前一直习惯使用sublime,最近发现phpstorm比submit稍微更强大些,其很多插件都是直接可以使用,不需要另外去拓展了 其中的破解.汉化步骤就需要借助一些资源 (1)破解 安装完毕后,直接 ...