Kafka面试题
1、如何获取topic主题的列表
bin/kafka-topics.sh --list --zookeeper localhost:2181
2、生产者和消费者的命令行是什么?
生产者在主题上发布消息:
bin/kafka-console-producer.sh --broker-list 192.168.43.49:9092 --topic Hello-Kafka
注意这里的IP是server.properties中的listeners的配置。接下来每个新行就是输入一条新消息。
消费者接受消息:
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic Hello-Kafka --from-beginning
3、consumer是推还是拉?
Kafka最初考虑的问题是,customer应该从brokes拉取消息还是brokers将消息推送到consumer,也就是pull还push。在这方面,Kafka遵循了一种大部分消息系统共同的传统的设计:producer将消息推送到broker,consumer从broker拉取消息。
一些消息系统比如Scribe和Apache Flume采用了push模式,将消息推送到下游的consumer。这样做有好处也有坏处:由broker决定消息推送的速率,对于不同消费速率的consumer就不太好处理了。消息系统都致力于让consumer以最大的速率最快速的消费消息,但不幸的是,push模式下,当broker推送的速率远大于consumer消费的速率时,consumer恐怕就要崩溃了。最终Kafka还是选取了传统的pull模式。
Pull模式的另外一个好处是consumer可以自主决定是否批量的从broker拉取数据。Push模式必须在不知道下游consumer消费能力和消费策略的情况下决定是立即推送每条消息还是缓存之后批量推送。如果为了避免consumer崩溃而采用较低的推送速率,将可能导致一次只推送较少的消息而造成浪费。Pull模式下,consumer就可以根据自己的消费能力去决定这些策略。
Pull有个缺点是,如果broker没有可供消费的消息,将导致consumer不断在循环中轮询,直到新消息到t达。为了避免这点,Kafka有个参数可以让consumer阻塞知道新消息到达(当然也可以阻塞知道消息的数量达到某个特定的量这样就可以批量发送)。
4、讲讲kafka维护消费状态跟踪的方法
大部分消息系统在broker端的维护消息被消费的记录:一个消息被分发到consumer后broker就马上进行标记或者等待customer的通知后进行标记。这样也可以在消息在消费后立马就删除以减少空间占用。
但是这样会不会有什么问题呢?如果一条消息发送出去之后就立即被标记为消费过的,一旦consumer处理消息时失败了(比如程序崩溃)消息就丢失了。为了解决这个问题,很多消息系统提供了另外一个个功能:当消息被发送出去之后仅仅被标记为已发送状态,当接到consumer已经消费成功的通知后才标记为已被消费的状态。这虽然解决了消息丢失的问题,但产生了新问题,首先如果consumer处理消息成功了但是向broker发送响应时失败了,这条消息将被消费两次。第二个问题时,broker必须维护每条消息的状态,并且每次都要先锁住消息然后更改状态然后释放锁。这样麻烦又来了,且不说要维护大量的状态数据,比如如果消息发送出去但没有收到消费成功的通知,这条消息将一直处于被锁定的状态,
Kafka采用了不同的策略。Topic被分成了若干分区,每个分区在同一时间只被一个consumer消费。这意味着每个分区被消费的消息在日志中的位置仅仅是一个简单的整数:offset。这样就很容易标记每个分区消费状态就很容易了,仅仅需要一个整数而已。这样消费状态的跟踪就很简单了。
这带来了另外一个好处:consumer可以把offset调成一个较老的值,去重新消费老的消息。这对传统的消息系统来说看起来有些不可思议,但确实是非常有用的,谁规定了一条消息只能被消费一次呢?
5、讲一下主从同步
https://blog.csdn.net/honglei915/article/details/37565289
6、为什么需要消息系统,mysql不能满足需求吗?
1.解耦:
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
2.冗余:
消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
3.扩展性:
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。
4.灵活性 & 峰值处理能力:
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
5.可恢复性:
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
6.顺序保证:
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。(Kafka 保证一个 Partition 内的消息的有序性)
7.缓冲:
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
8.异步通信:
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
7、Zookeeper对于Kafka的作用是什么?
Zookeeper是一个开放源码的、高性能的协调服务,它用于Kafka的分布式应用。
Zookeeper主要用于在集群中不同节点之间进行通信
在Kafka中,它被用于提交偏移量,因此如果节点在任何情况下都失败了,它都可以从之前提交的偏移量中获取
除此之外,它还执行其他活动,如: leader检测、分布式同步、配置管理、识别新节点何时离开或连接、集群、节点实时状态等等。
8、数据传输的事务定义有哪三种?
和MQTT的事务定义一样都是3种。
(1)最多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输
(2)最少一次: 消息不会被漏发送,最少被传输一次,但也有可能被重复传输.
(3)精确的一次(Exactly once): 不会漏传输也不会重复传输,每个消息都传输被一次而且仅仅被传输一次,这是大家所期望的
9、Kafka判断一个节点是否还活着有那两个条件?
(1)节点必须可以维护和ZooKeeper的连接,Zookeeper通过心跳机制检查每个节点的连接
(2)如果节点是个follower,他必须能及时的同步leader的写操作,延时不能太久
10、Kafka 与传统MQ消息系统之间有三个关键区别
(1).Kafka 持久化日志,这些日志可以被重复读取和无限期保留
(2).Kafka 是一个分布式系统:它以集群的方式运行,可以灵活伸缩,在内部通过复制数据提升容错能力和高可用性
(3).Kafka 支持实时的流式处理
11、讲一讲kafka的ack的三种机制
request.required.acks有三个值 0 1 -1(all)
0:生产者不会等待broker的ack,这个延迟最低但是存储的保证最弱当server挂掉的时候就会丢数据。
1:服务端会等待ack值 leader副本确认接收到消息后发送ack但是如果leader挂掉后他不确保是否复制完成新leader也会导致数据丢失。
-1(all):服务端会等所有的follower的副本受到数据后才会受到leader发出的ack,这样数据不会丢失
12、消费者如何不自动提交偏移量,由应用提交?
将auto.commit.offset设为false,然后在处理一批消息后commitSync() 或者异步提交commitAsync()
即:
ConsumerRecords<> records = consumer.poll();
for (ConsumerRecord<> record : records){
。。。
tyr{
consumer.commitSync()
}
。。。
}
13、消费者故障,出现活锁问题如何解决?
出现“活锁”的情况,是它持续的发送心跳,但是没有处理。为了预防消费者在这种情况下一直持有分区,我们使用max.poll.interval.ms活跃检测机制。 在此基础上,如果你调用的poll的频率大于最大间隔,则客户端将主动地离开组,以便其他消费者接管该分区。 发生这种情况时,你会看到offset提交失败(调用commitSync()引发的CommitFailedException)。这是一种安全机制,保障只有活动成员能够提交offset。所以要留在组中,你必须持续调用poll。
消费者提供两个配置设置来控制poll循环:
max.poll.interval.ms:增大poll的间隔,可以为消费者提供更多的时间去处理返回的消息(调用poll(long)返回的消息,通常返回的消息都是一批)。缺点是此值越大将会延迟组重新平衡。
max.poll.records:此设置限制每次调用poll返回的消息数,这样可以更容易的预测每次poll间隔要处理的最大值。通过调整此值,可以减少poll间隔,减少重新平衡分组的
对于消息处理时间不可预测地的情况,这些选项是不够的。 处理这种情况的推荐方法是将消息处理移到另一个线程中,让消费者继续调用poll。 但是必须注意确保已提交的offset不超过实际位置。另外,你必须禁用自动提交,并只有在线程完成处理后才为记录手动提交偏移量(取决于你)。 还要注意,你需要pause暂停分区,不会从poll接收到新消息,让线程处理完之前返回的消息(如果你的处理能力比拉取消息的慢,那创建新线程将导致你机器内存溢出)。
14、如何控制消费的位置
kafka使用seek(TopicPartition, long)指定新的消费位置。用于查找服务器保留的最早和最新的offset的特殊的方法也可用(seekToBeginning(Collection) 和 seekToEnd(Collection))
15、kafka分布式(不是单机)的情况下,如何保证消息的顺序消费?
Kafka分布式的单位是partition,同一个partition用一个write ahead log组织,所以可以保证FIFO的顺序。不同partition之间不能保证顺序。但是绝大多数用户都可以通过message key来定义,因为同一个key的message可以保证只发送到同一个partition。
Kafka 中发送1条消息的时候,可以指定(topic, partition, key) 3个参数。partiton 和 key 是可选的。如果你指定了 partition,那就是所有消息发往同1个 partition,就是有序的。并且在消费端,Kafka 保证,1个 partition 只能被1个 consumer 消费。或者你指定 key(比如 order id),具有同1个 key 的所有消息,会发往同1个 partition。
16、kafka的高可用机制是什么?
这个问题比较系统,回答出kafka的系统特点,leader和follower的关系,消息读写的顺序即可。
https://www.cnblogs.com/qingyunzong/p/9004703.html
https://www.tuicool.com/articles/BNRza2E
https://yq.aliyun.com/articles/64703
17、kafka如何减少数据丢失
https://www.cnblogs.com/huxi2b/p/6056364.html
18、kafka如何不消费重复数据?比如扣款,我们不能重复的扣。
其实还是得结合业务来思考,我这里给几个思路:
比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update 一下好吧。
比如你是写 Redis,那没问题了,反正每次都是 set,天然幂等性。
比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的 id,类似订单 id 之类的东西,然后你这里消费到了之后,先根据这个 id 去比如 Redis 里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个 id 写 Redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。
比如基于数据库的唯一键来保证重复数据不会重复插入多条。因为有唯一键约束了,重复数据插入只会报错,不会导致数据库中出现脏数据。
Kafka面试题的更多相关文章
- 14个最常见的Kafka面试题及答案【转】
原创 IT168企业级 2017-08-21 17:40 本文为您盘点了14个最常见的Kafka面试题,同时也是对Apache Kafka初学者必备知识点的一个整理与介绍. 1.请说明什么是Apach ...
- 消息队列面试题、RabbitMQ面试题、Kafka面试题、RocketMQ面试题 (史上最全、持续更新、吐血推荐)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- 互联网最新kafka技术面试题含答案
1.Kafka 的设计时什么样的呢? Kafka 将消息以 topic 为单位进行归纳 将向 Kafka topic 发布消息的程序成为 producers. 将预订 topics 并消费消息的程序成 ...
- kafka 面试题 无答案
kafka节点之间如何复制备份的? kafka消息是否会丢失?为什么? kafka最合理的配置是什么? kafka的leader选举机制是什么? kafka对硬件的配置有什么要求? kafka的消息保 ...
- 50道Kafka面试题和解析(转载)
转载:https://zhuanlan.zhihu.com/p/78912551 前言 Apache Kafka的受欢迎程度很高,Kafka拥有充足的就业机会和职业前景.此外,在这个时代拥有kafka ...
- Kafka面试题总结
1.Kafka 都有哪些特点? 高吞吐量.低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partit ...
- 18道kafka高频面试题哪些你还不会?(含答案和思维导图)
前言 Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处 ...
- kafka学习指南(总结版)
版本介绍 从使用上来看,以0.9为分界线,0.9开始不再区分高级/低级消费者API. 从兼容性上来看,以0.8.x为分界线,0.8.x不兼容以前的版本. 总体拓扑架构 从上可知: 1.生产者不需要访问 ...
- 2019大厂Java岗面试题全曝光,刷完这1020道,金三银四大厂等你
2019大厂Java岗面试题全曝光,刷完这1020道,金三银四大厂等你 前言: 本文收集整理了各大厂常见面试题N道,你想要的这里都有 内容涵盖:Java.MyBatis.ZooKeeper.Dubbo ...
随机推荐
- Android 框架练成 教你打造高效的图片加载框架
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41874561,本文出自:[张鸿洋的博客] 1.概述 优秀的图片加载框架不要太多, ...
- yum 出现错误ImportError: No module named urlgrabber.grabber
yum 出现错误: root@iZ23t4pnz63Z ~]# yum update Loaded plugins: fastestmirror Loading mirror speeds from ...
- 开机出现loading Operating System的解决方案
今天清理机箱之后开机发现电脑屏幕出现以下界面,提示的内容是"正在加载操作系统,磁盘启动失败,请插入系统盘..",出现这种状况的原因有以下几种: 1.主引导的扇区的损坏或者信息的错乱 ...
- bzoj 2510 弱题 矩阵乘
看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...
- BZOJ_2151_种树_贪心+堆+链表
BZOJ_2151_种树_贪心+堆 Description A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树.园林部门得到指令后,初步规划出n个种树的位置,顺时针编 ...
- AbstractQueuedSynchronizer AQS框架源码剖析
一.引子 Java.util.concurrent包都是Doug Lea写的,来混个眼熟 是的,就是他,提出了JSR166(Java Specification RequestsJava 规范提案), ...
- 前端随笔 - JavaScript中的闭包
前阵子重新复习了一下js基础知识,第一篇博客就以分享闭包心得为开始吧. 首先,要理解闭包,就必须要了解一个概念:作用域链. 作用域链 作用域代表着可访问变量的集合,变量分为全局变量和局部变量两种,在函 ...
- Python中collections模块
目录 Python中collections模块 Counter defaultdict OrderedDict namedtuple deque ChainMap Python中collections ...
- safari 浏览器 input textarea select 等不能响应用户输入
解决办法 -webkit-user-select:auto; /*webkit浏览器*/ user-select:auto; -o-user-select:auto; -ms-user-select: ...
- 从零单排学Redis【黄金】
前言 只有光头才能变强 好的,今天我们要上黄金段位了,如果还没经历过青铜和白银阶段的,可以先去蹭蹭经验再回来: 从零单排学Redis[青铜] 从零单排学Redis[白银] 看过相关Redis基础的同学 ...