BZOJ_4773_负环

Description

在忘记考虑负环之后,黎瑟的算法又出错了。对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得
环上的边权和为负数。保证图中不包含重边和自环。

Input

第1两个整数n, m,表示图的点数和边数。
接下来的m行,每<=三个整数ui, vi, wi,表<=有一条从ui到vi,权值为wi的有向边。
2 <= n <= 300
0 <= m <= n(n <= 1)
1 <= ui, vi <= n
|wi| <= 10^4

Output

仅一行一个整数,表示点数最小的环上的点数,若图中不存在负环输出0。

Sample Input

3 6
1 2 -2
2 1 1
2 3 -10
3 2 10
3 1 -10
1 3 10

Sample Output

2

先开$Logn$个矩阵$dis$,$dis[i][j][k]$表示从$j$到$k$走$2^{i}$条边的最短路。
然后像倍增$lca$那样,再从大到小找到最后一个没有负环的矩阵,再乘一次初始矩阵,判断有没有负环即可。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 350
int f[N][N][20],n,m,L[N];
struct Mat {
int v[301][301];
Mat(){memset(v,0x3f,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(k=1;k<=n;k++) {
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
re.v[i][j]=min(re.v[i][j],v[i][k]+x.v[k][j]);
}
}
}
return re;
}
}dis[10];
bool judge(Mat x) {
int i;
for(i=1;i<=n;i++) {
if(x.v[i][i]<0) return 1;
}
return 0;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,z,sum=0;
Mat tmp;
for(i=1;i<=n;i++) dis[0].v[i][i]=tmp.v[i][i]=0;
for(i=2;i<=n;i++) L[i]=L[i>>1]+1;
for(i=1;i<=m;i++) {
scanf("%d%d%d",&x,&y,&z);
dis[0].v[x][y]=z;
}
for(i=1;i<=L[n];i++) dis[i]=dis[i-1]*dis[i-1];
for(i=L[n];i>=0;i--) {
if(!judge(tmp*dis[i])) {
tmp=tmp*dis[i]; sum+=(1<<i);
}
}
tmp=tmp*dis[0];
printf("%d\n",judge(tmp)?sum+1:0);
}

BZOJ_4773_负环_倍增弗洛伊德的更多相关文章

  1. bzoj4773: 负环(倍增floyd)

    浴谷夏令营例题...讲师讲的很清楚,没看题解代码就自己敲出来了 f[l][i][j]表示i到j走2^l条边的最短距离,显然有f[l][i][j]=min(f[l][i][j],f[l-1][i][k] ...

  2. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  3. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  4. bzoj 4773: 负环——倍增

    Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边和自环. Input 第1 ...

  5. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  6. bzoj4773 负环 倍增+矩阵

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...

  7. 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp

    容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...

  8. 【洛谷 P3385】模板-负环(图论--spfa)

    题目:有一个图有N个顶点,M条边.边用三个整数a b w表示,意思为a->b有一条权值为w的边(若w<0则为单向,否则双向).共T组数据.对于每组数据,存在负环则输出一行"YE5 ...

  9. POJ3259(Wormholes) 判断负环

    题意: 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W个 虫洞组成,FJ想从一块土地开始,经过若干条路和虫洞 ...

随机推荐

  1. HTML 5核心内容

    demo飞象 HTML 5 系列文章索引:http://www.cnblogs.com/webabcd/archive/2012/05/27/2520567.html demo飞象HTML 5 (11 ...

  2. javascript学习(二)javascript常见问题总结

    在js使用过程中,经常会碰到一些问题,本人利用闲暇时间整理了一些常见问题的解决方法,贴出来和大家分享,有需要的朋友可以参考下 1.JS中方法和变量都是区分大小写的  2.单引号.双引号在JS中没有特殊 ...

  3. 《深入理解JAVA虚拟机》笔记1

    java程序运行时的内存空间,按照虚拟机规范有下面几项: )程序计数器 指示下条命令执行地址.当然是线程私有,不然线程怎么能并行的起来. 不重要,占内存很小,忽略不计. )方法区 这个名字很让我迷惑. ...

  4. SQL解决"双重职位的查询"

    双重身份问题: create table role_tab ( person char(5) not null, role  char(1) not null ) insert into role_t ...

  5. Modelsim中使用TCL脚本编写do文件实现自动化仿真

    通常我们使用Modelsim进行仿真,是通过图形界面点点点来进行操作,殊不知Modelsim完美支持TCL脚本语言及批处理命令do文件.简单来说就是从你修改完代码后到你重新编译把需要的信号拉出来查看, ...

  6. WSGI及gunicorn指北(二)

    pyg0已经大概了解了wsgi.现在他决定深入探索他们实际在生产环境里用到的web 服务器 -gunicorn. 先来看看官网的介绍:Gunicorn 是一个运行在Unix上的python WSGI ...

  7. C++string函数之strcat_s

    跟上一篇的strcpy_s一样,是新推出的较为安全的strcat函数 strcat_s脱胎于strcat,用于两个字符串的链接,strcat(str1,str2)直接返回新的str1. 但在vs200 ...

  8. 关于期权池Option Pools与Vesting:码农创业防身必备法器

    之前又看到饿了么创始人团队纠纷的几篇文章,参考了百科.wiki.36Kr.虎嗅.知乎以及邵亦波老师的文章,对之前一直感兴趣的期权汇编初略总结了下 ,仍觉粗糙,对一些具体操作还是不甚了了,不过感觉在中国 ...

  9. Android字符串资源及其格式化

    http://blog.csdn.NET/wsywl/article/details/6555959 在Android项目布局中,资源以XML文件的形式存储在res/目录下.为了更好的实现国际化及本地 ...

  10. C#避免踩坑之如何添加paint事件

    看截图: 首先,右击->属性 然后出来这个界面. 接下来,注意看这个界面的上面:鼠标悬停这个闪电符号,看到没,事件!! 那个闪电符号,点它! 然后下拉找到这个: 你要事先在代码里面添加Form1 ...