Description

小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池。

这 n 个城池用 1 到 n 的整数表示。除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,
其中 fi <i。也就是说,所有城池构成了一棵有根树。这 m 个骑士用 1 到 m 的整数表示,其
中第 i 个骑士的初始战斗力为 si,第一个攻击的城池为 ci。
每个城池有一个防御值 hi,如果一个骑士的战斗力大于等于城池的生命值,那么骑士就可
以占领这座城池;否则占领失败,骑士将在这座城池牺牲。占领一个城池以后,骑士的战斗力
将发生变化,然后继续攻击管辖这座城池的城池,直到占领 1 号城池,或牺牲为止。
除 1 号城池外,每个城池 i 会给出一个战斗力变化参数 ai;vi。若 ai =0,攻占城池 i 以后骑士战斗力会增加 vi;若 ai =1,攻占城池 i 以后,战斗力会乘以 vi。注意每个骑士是单独计算的。也就是说一个骑士攻击一座城池,不管结果如何,均不会影响其他骑士攻击这座城池的结果。
现在的问题是,对于每个城池,输出有多少个骑士在这里牺牲;对于每个骑士,输出他攻占的城池数量。

Input

第 1 行包含两个正整数 n;m,表示城池的数量和骑士的数量。

第 2 行包含 n 个整数,其中第 i 个数为 hi,表示城池 i 的防御值。
第 3 到 n +1 行,每行包含三个整数。其中第 i +1 行的三个数为 fi;ai;vi,分别表示管辖
这座城池的城池编号和两个战斗力变化参数。
第 n +2 到 n + m +1 行,每行包含两个整数。其中第 n + i 行的两个数为 si;ci,分别表
示初始战斗力和第一个攻击的城池。

Output

输出 n + m 行,每行包含一个非负整数。其中前 n 行分别表示在城池 1 到 n 牺牲的骑士

数量,后 m 行分别表示骑士 1 到 m 攻占的城池数量。

Sample Input

5 5
50 20 10 10 30
1 1 2
2 0 5
2 0 -10
1 0 10
20 2
10 3
40 4
20 4
35 5

Sample Output

2
2
0
0
0
1
1
3
1
1

HINT

对于 100% 的数据,1 <= n;m <= 300000;
1 <= fi<i; 1 <= ci <= n; -10^18 <= hi,vi,si <=
10^18;ai等于1或者2;当 ai =1 时,vi > 0;保证任何时候骑士战斗力值的绝对值不超过 10^18。

题解

考虑可并堆。

先将所有 “骑士” 放在 第一个攻占的 “城池” 上。

将不合法的剔除(即战斗力小于防御力的 “骑士”),统计答案。

牺牲的骑士数量直接等于 $pop$ 掉的骑士人数,而骑士攻占的城池数等于起始城池与当前城池间的深度差。

现在考虑修改:可以打上标记, $pushdown$ 时先转移乘法标记,再转移加法标记。转移只需要转移 $merge$ 操作经过的节点。

值得注意的是,在 $pop$ 堆顶元素时需先将堆顶的标记下移。

 //It is made by Awson on 2018.1.4
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ; struct mergable_tree {
int ch[N+][], dist[N+], root[N+];
LL prod[N+], sum[N+], key[N+];
mergable_tree() {
for (int i = ; i <= N; i++) prod[i] = ;
}
void pushdown(int o) {
#define ls ch[o][0]
#define rs ch[o][1]
if (prod[o] != ) {
key[ls] *= prod[o], key[rs] *= prod[o]; sum[ls] *= prod[o], sum[rs] *= prod[o]; prod[ls] *= prod[o], prod[rs] *= prod[o];
prod[o] = ;
}
if (sum[o] != ) {
key[ls] += sum[o], key[rs] += sum[o]; sum[ls] += sum[o], sum[rs] += sum[o];
sum[o] = ;
}
#undef ls
#undef rs
}
int merge(int a, int b) {
if (!a || !b) return a+b;
pushdown(a), pushdown(b);
if (key[a] > key[b]) swap(a, b);
ch[a][] = merge(ch[a][], b);
if (dist[ch[a][]] < dist[ch[a][]]) swap(ch[a][], ch[a][]);
dist[a] = dist[ch[a][]]+;
return a;
}
}T;
int n, m, f, a[N+], c[N+];
LL h[N+], v[N+], s;
struct tt {
int to, next;
}edge[N+];
int path[N+], top;
int sum[N+], ans[N+], dep[N+]; void add(int u, int v) {
edge[++top].to = v;
edge[top].next = path[u];
path[u] = top;
}
void dfs(int u, int depth) {
dep[u] = depth;
for (int i = path[u]; i; i = edge[i].next) {
dfs(edge[i].to, depth+); T.root[u] = T.merge(T.root[u], T.root[edge[i].to]);
}
while (T.key[T.root[u]] < h[u] && T.root[u] != ) {
++sum[u];
ans[T.root[u]] = dep[c[T.root[u]]]-depth;
T.pushdown(T.root[u]);
T.root[u] = T.merge(T.ch[T.root[u]][], T.ch[T.root[u]][]);
}
if (a[u] == ) T.key[T.root[u]] += v[u], T.sum[T.root[u]] += v[u];
else T.key[T.root[u]] *= v[u], T.prod[T.root[u]] *= v[u], T.sum[T.root[u]] *= v[u];
}
void work() {
memset(ans, -, sizeof(ans));
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%lld", &h[i]);
for (int i = ; i <= n; i++) {
scanf("%d%d%lld", &f, &a[i], &v[i]);
add(f, i);
}
for (int i = ; i <= m; i++) {
scanf("%lld%d", &s, &c[i]);
T.key[i] = s;
T.root[c[i]] = T.merge(T.root[c[i]], i);
}
dfs(, );
for (int i = ; i <= n; i++) printf("%d\n", sum[i]);
for (int i = ; i <= m; i++) printf("%d\n", ans[i] == - ? dep[c[i]] : ans[i]);
}
int main() {
work();
return ;
}

[JLOI 2015]城池攻占的更多相关文章

  1. 【BZOJ】【4003】【JLOI2015】城池攻占

    可并堆 QAQ改了一下午……最终弃疗求助zyf……居然被秒了QAQ真是弱到不行(zyf太神了Orz) 还是先考虑部分分的做法: 1.$n,m\leq 3000$:可以暴力模拟每个骑士的攻打过程,也可以 ...

  2. BZOJ_4003_[JLOI2015]城池攻占_可并堆

    BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...

  3. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  4. 【BZOJ4003】[JLOI2015]城池攻占 可并堆

    [BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...

  5. [bzoj4003][JLOI2015]城池攻占_左偏树

    城池攻占 bzoj-4003 JLOI-2015 题目大意:一颗n个节点的有根数,m个有初始战斗力的骑士都站在节点上.每一个节点有一个standard,如果这个骑士的战斗力超过了这个门槛,他就会根据城 ...

  6. [洛谷P3261] [JLOI2015]城池攻占(左偏树)

    不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...

  7. BZOJ 4003 【JLOI2015】城池攻占

    Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, ...

  8. 【BZOJ4003】【JLOI2015】城池攻占(左偏树)

    题面 题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi ...

  9. [JLOI2015]城池攻占

    题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...

随机推荐

  1. Java字符编码浅析

    Java基本类型占用的字节数:1字节: byte , boolean2字节: short , char4字节: int , float8字节: long , double注:1字节(byte)=8位( ...

  2. 论C++的智能指针

    一.简介   参考这篇博客,并且根据<C++ Primer>中相关知识,我总结了C++关于智能指针方面的内容.   为了解决内存泄漏的问题,便出现了智能指针.STL提供的智能指针有:aut ...

  3. pop 一个viewController时候会有键盘闪现出来又消失

    原因是alertview关闭影响了系统其他的动画导致的.要么延迟调用,要么自己做一个alertview. iOS 8.3,dismiss alert view时系统会尝试恢复之前的keyboard i ...

  4. JVM启动参数

    JVM参数的含义 实例见实例分析 参数名称 含义 默认值   -Xms 初始堆大小 物理内存的1/64(<1GB) 默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,J ...

  5. UVA 10622 Perfect P-th Powers

    https://vjudge.net/problem/UVA-10622 将n分解质因数,指数的gcd就是答案 如果n是负数,将答案除2至奇数 原理:(a*b)^p=a^p*b^p #include& ...

  6. Oracle银行存取钱系统

    Oracle银行存取钱系统 /* 银行系统 要求: 1.创建一个用户信息表(userinfo).一个交易信息表(deal) 2.用户信息表字段:用户编号.用户名称.密码.余额 交易信息表字段:编号.交 ...

  7. 源码解析Flask的配置文件

    在flask里,我们常在主文件中定义某些配置,比如: app.debug = True app.secret_key = 'helloworld!!' 实际上,flask中默认可以进行可选的配置项有很 ...

  8. MyEclipse的多模块Maven web(ssm框架整合)

    Maven的多模块可以让项目结构更明确,提高功能的内聚,降低项目的耦合度,真正的体现出分层这一概念. 我们在操作中,要明白为什么这样做,要了解到更深的层次,这样,我们就不限于个别软件了. 话不多说,直 ...

  9. 新概念英语(1-109)A Good Idea

    Lesson 109 A good idea 好主意 Listen to the tape then answer this question. What does Jane have with he ...

  10. LDAP是什么

    LDAP的英文全称是Lightweight Directory Access Protocol,一般都简称为LDAP.LDAP目录服务是一种特殊的数据库系统,其专门针对读取,浏览和搜索操作进行了特定的 ...