zjuoj 3780 Paint the Grid Again
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780
Paint the Grid Again
Time Limit: 2 Seconds Memory Limit: 65536 KB
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or white).
Leo has a magical brush which can paint any row with black color, or any column with white color. Each time he uses the brush, the previous color of cells will be covered by the new color. Since the magic of the brush is limited, each row and each column can only be painted at most once. The cells were painted in some other color (neither black nor white) initially.
Please write a program to find out the way to paint the grid.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer N (1 <= N <= 500). Then N lines follow. Each line contains a string with N characters. Each character is either 'X' (black) or 'O' (white) indicates the color of the cells should be painted to, after Leo finished his painting.
Output
For each test case, output "No solution" if it is impossible to find a way to paint the grid.
Otherwise, output the solution with minimum number of painting operations. Each operation is either "R#" (paint in a row) or "C#" (paint in a column), "#" is the index (1-based) of the row/column. Use exactly one space to separate each operation.
Among all possible solutions, you should choose the lexicographically smallest one. A solution X is lexicographically smaller than Y if there exists an integer k, the first k - 1 operations of X and Y are the same. The k-th operation of X is smaller than the k-th in Y. The operation in a column is always smaller than the operation in a row. If two operations have the same type, the one with smaller index of row/column is the lexicographically smaller one.
Sample Input
2
2
XX
OX
2
XO
OX
Sample Output
R2 C1 R1
No solution
Author: YU, Xiaoyao
Source: The 11th Zhejiang Provincial Collegiate Programming Contest
分析;
给定n*n的矩阵
有2个操作:
1、把一行变成X
2、把一列变成O
限制:每行(每列)只能变一次
给定结果图,开始时图无O,X,问最小操作步数(且字典序最小)
思路:
对于(i,j)这个格子,若现在涂的是 O,则去掉O这排,(让这排都变成X即可)可以直接认为(i,j)是X
所以当某排的X攒满n个时,就可以去掉这排X
直接模拟即可
先把所有 全为O或全为X的 行和列预处理出来,放到一个栈里
因为字典序最小,所以先处理列再处理行,第i列 用i+n表示, 第i行用i表示
然后给栈排个序,这样就得到处理当前情况的顺序, 入个队列,然后一个个去掉就可以了。
AC代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<set>
using namespace std;
#define N 1005
vector<int>ans;
char mp[N][N];
int n, h[N], l[N];
int yes[N];
int Stack[N], Top; void init(){
ans.clear();
memset(yes, , sizeof yes);
memset(h, , sizeof h);
memset(l, , sizeof l);
Top = ;
}
bool cmp(int a,int b){return a>b;}
//0-n-1 表示列 n-2n-1 表示行
void work(){
sort(Stack, Stack+Top, cmp);
queue<int>q;
int i, j;
for(int i = ; i < Top; i++){
q.push(Stack[i]), ans.push_back(Stack[i]); yes[Stack[i]]=-;
}
Top = ;
while(!q.empty()){
int u = q.front(); q.pop();
Top = ;
if(u<n)
for(j = ; j < n; j++)
{
mp[j][u] = 'X';
h[j]++;
if(yes[j+n]!=- && h[j]==n)Stack[Top++] = j+n;
}
else {
u-=n;
for(j = ; j < n; j++)
{
mp[u][j] = 'O';
l[j]++;
if(yes[j]!=- && l[j]==n)Stack[Top++] = j;
}
}
sort(Stack, Stack+Top, cmp);
for(i = ; i < Top; i++)q.push(Stack[i]), yes[Stack[i]] = -, ans.push_back(Stack[i]);
}
for(int i = ; i < *n; i++)if(yes[i]==){puts("No solution");return;}
for(int i = ans.size()-; i>=; i--){
int u = ans[i];
if(u>=n)printf("R"), u-=n;
else printf("C");
printf("%d",u+);
i ? printf(" ") : puts("");
}
}
int main(){
int T;scanf("%d",&T);
int i, j;
while(T--){
scanf("%d",&n);
init();
for(i=;i<n;i++)scanf("%s",mp[i]);
for(i=;i<n;i++)
{
for(j = ; j<n; j++)if(mp[i][j]=='X')h[i]++;
if(h[i]==n) Stack[Top++] = i+n;
else if(h[i]==) yes[i+n] = -;
}
for(i=;i<n;i++)
{
for(j = ; j<n; j++)if(mp[j][i]=='O')l[i]++;
if(l[i]==n) Stack[Top++] = i;
else if(l[i]==) yes[i] = -;
}
if(Top==){puts("No solution");continue;}
work();
}
return ;
}
/*
99
1
O
3
OOO
OOO
OOO 2
XX
OX
2
XO
OX */
zjuoj 3780 Paint the Grid Again的更多相关文章
- ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds Me ...
- ZOJ 3780 Paint the Grid Again(隐式图拓扑排序)
Paint the Grid Again Time Limit: 2 Seconds Memory Limit: 65536 KB Leo has a grid with N × N cel ...
- zjuoj 3773 Paint the Grid
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3773 Paint the Grid Time Limit: 2 Secon ...
- ZOJ 3780 Paint the Grid Again
拓扑排序.2014浙江省赛题. 先看行: 如果这行没有黑色,那么这个行操作肯定不操作. 如果这行全是黑色,那么看每一列,如果列上有白色,那么这一列连一条边到这一行,代表这一列画完才画那一行 如果不全是 ...
- Paint the Grid Again ZOJ - 3780 拓扑
Paint the Grid Again Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu [ ...
- 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...
- ZOJ 3781 Paint the Grid Reloaded(BFS)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Leo has a grid with N rows an ...
- Paint the Grid Reloaded ZOJ - 3781 图论变形
Paint the Grid Reloaded Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %lld & %ll ...
- Paint the Grid Again (隐藏建图+优先队列+拓扑排序)
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...
随机推荐
- 数学 SRM 690 Div1 WolfCardGame 300
Problem Statement Wolf Sothe and Cat Snuke are playing a card game. The game is played with exa ...
- Android 高亮显示文本中的关键字
总结:SpannableString用好,可以各种替换Span来操作各种内容 1.文本关键字高亮关键在于:SpannableString使用 主要就是通过关键字在文本的开始index,结束index来 ...
- 最新版 CocoaPods 的安装流程
iOS 最新版 CocoaPods 的安装流程 1.移除现有Ruby默认源 $gem sources --remove h ...
- java的poi技术读取Excel[2003-2007,2010]
这篇blog主要是讲述java中poi读取excel,而excel的版本包括:2003-2007和2010两个版本, 即excel的后缀名为:xls和xlsx. 读取excel和MySQL相关: ja ...
- ZeroMQ接口函数之 :zmq_tcp – 使用TCP协议的ØMQ网络单播协议
ZeroMQ 官方地址 :http://api.zeromq.org/4-1:zmq-tcp zmq_tcp(7) ØMQ Manual - ØMQ/4.1.0 Name zmq_t ...
- 非递归创建二叉树( C++队列 )
非递归按照 层序 创建二叉树,利用 队列(即可先进先出特点)存放已访问的结点元素的地址. 初始化:front=rear= -1: 每储存一个结点元素 rear+1 ,利用 rear%2==0 来使 f ...
- (学)解决VMware Taking ownership of this virtual machine failed
原文:http://blog.csdn.net/fisher_jiang/article/details/6992588背景: 一次crash可能会造成虚拟机锁死的情况发生现象:点击take owne ...
- 02.JavaScript基础下
运算符 算术:+ 加.- 减.* 乘./ 除.% 取模 实例:隔行变色.秒转时间 赋值:=.+=.-=.*=./=.%= 关系:<.>.<=.>=.==.===.!=(不等). ...
- 在Windows下使用Git
关于Git git是当今最流行的版本控制系统,因为是诞生在Linux操作系统下,因此Linux对git天生有最好的支持,但好在各路大牛的努力下,目前在Windows也能较为完美的使用.以下便是我使用g ...
- openstack-keystone
preparation: config: /etc/keystone/keystone.conf log: /var/log/keystone.log 1. change log level: vi ...