[OpenCV] Samples 04: contours2
要先变为二值图像:cvThreshold
提取轮廓:cvFindContours
参数描述:
hiararchy:参数和轮廓个数相同。
每个轮廓contours[ i ] 对应4个hierarchy元素的索引编号,即:
- hierarchy[ i ][ 0 ] 后一个轮廓
- hierarchy[ i ][ 1 ] 前一个轮廓
- hierarchy[ i ][ 2 ] 父轮廓
- hierarchy[ i ][ 3 ] 内嵌轮廓
如果没有对应项,该值设置为负数。
mode:表示轮廓的检索模式
CV_RETR_EXTERNAL 表示只检测外轮廓
CV_RETR_LIST 检测的轮廓不建立等级关系
CV_RETR_CCOMP 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
CV_RETR_TREE 建立一个等级树结构的轮廓。
method:为轮廓的近似办法
CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
CV_CHAIN_APPROX_SIMPLE 压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS 使用teh-Chinl chain 近似算法
offset:表示代表轮廓点的偏移量,可以设置为任意值。对ROI图像中找出的轮廓,并要在整个图像中进行分析时,这个参数还是很有用的。
findContours 后会对输入的二值图像改变,最好需创建新MAT来存放;
findContours 后的轮廓信息contours可能过于复杂不平滑,可以用 approxPolyDP() 对该多边形曲线做适当近似。
contourArea() 函数可以得到当前轮廓包含区域的大小,方便轮廓的筛选。
findContours经常与 drawContours() 配合使用,用来将轮廓绘制出来。
- 第一个参数,image表示目标图像
- 第二个参数,contours表示输入的轮廓组,每一组轮廓由点vector构成
- 第三个参数,contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓
- 第四个参数,color为轮廓的颜色
- 第五个参数,thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部
- 第六个参数,lineType为线型
- 第七个参数,为轮廓结构信息
- 第八个参数,为maxLevel
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull(),
- 输入参数,是contours组中的一个轮廓
- 返回,外凸包络的点集。
还可以得到轮廓的外包络矩形,使用函数 boundingRect(),
如果想得到旋转的外包络矩形,使用函数 minAreaRect(),返回值为RotatedRect;
也可以得到轮廓的外包络圆,对应的函数为 minEnclosingCircle();
想得到轮廓的外包络椭圆,对应的函数为 fitEllipse(),返回值也是RotatedRect,可以用ellipse函数画出对应的椭圆。
如果想根据多边形的轮廓信息 => 多边形的多阶矩,可以使用 类moments,这个类可以得到多边形和光栅形状的3阶以内的所有矩,
类内有变量m00,m10,m01,m20,m11,m02,m30,m21,m12,m03,
比如多边形的质心为 x = m10 / m00,y = m01 / m00。
如果想获得一点与多边形封闭轮廓的信息,可以调用 pointPolygonTest(),这个函数返回值为该点距离轮廓最近边界的距离,为正值为在轮廓内部,负值为在轮廓外部,0表示在边界上。
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <math.h>
#include <iostream> using namespace cv;
using namespace std; static void help()
{
cout
<< "\nThis program illustrates the use of findContours and drawContours\n"
<< "The original image is put up along with the image of drawn contours\n"
<< "Usage:\n"
<< "./contours2\n"
<< "\nA trackbar is put up which controls the contour level from -3 to 3\n"
<< endl;
} const int w = 500;
int levels = 3; vector<vector<Point> > contours;
vector<Vec4i> hierarchy; static void on_trackbar(int, void*)
{
Mat cnt_img = Mat::zeros(w, w, CV_8UC3);
int _levels = levels - 3;
drawContours( cnt_img, contours, _levels <= 0 ? 3 : -1, Scalar(128,255,255),
3, LINE_AA, hierarchy, std::abs(_levels) ); imshow("contours", cnt_img);
} int main( int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, "{help h||}");
if (parser.has("help"))
{
help();
return 0;
}
// Mat img = Mat::zeros(w, w, CV_8UC1); //Jeff --> we don't need to draw this by ourselves.
//Draw 6 faces
// for( int i = 0; i < 6; i++ )
// {
// int dx = (i%2)*250 - 30;
// int dy = (i/2)*150;
// const Scalar white = Scalar(255);
// const Scalar black = Scalar(0); // if( i == 0 )
// {
// for( int j = 0; j <= 10; j++ )
// {
// double angle = (j+5)*CV_PI/21;
// line(img, Point(cvRound(dx+100+j*10-80*cos(angle)),
// cvRound(dy+100-90*sin(angle))),
// Point(cvRound(dx+100+j*10-30*cos(angle)),
// cvRound(dy+100-30*sin(angle))), white, 1, 8, 0);
// }
// } // ellipse( img, Point(dx+150, dy+100), Size(100,70), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(30,20), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(30,20), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(15,15), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(15,15), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(5,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(5,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+150, dy+100), Size(10,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+150, dy+150), Size(40,10), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+27, dy+100), Size(20,35), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+273, dy+100), Size(20,35), 0, 0, 360, white, -1, 8, 0 );
// } Mat img = imread("/home/unsw/lolo.jpg");
Mat gray;
cvtColor(img, gray, COLOR_RGB2GRAY );
Mat binary;
threshold(gray, binary, 200,255,THRESH_BINARY); // (1) Pic One Show: show the faces
namedWindow( "image", 1 );
imshow( "image", binary ); // (2) Pic Two Show
//Extract the contours so that
vector<vector<Point> > contours0;
findContours( binary, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); contours.resize(contours0.size());
for( size_t k = 0; k < contours0.size(); k++ )
approxPolyDP(Mat(contours0[k]), contours[k], 3, true); // Jeff --> the same name to bind window and trackbar together.
// qt qml to draw would be much better.
// callback: on_trackbar()
namedWindow( "contours", 1 );
createTrackbar( "levels+3", "contours", &levels, 7, on_trackbar );
on_trackbar(0,0); waitKey();
return 0;
}
Reference: http://blog.csdn.net/felix86/article/details/38121959
采用cvFindContours提取轮廓,并过滤掉小面积轮廓,最后将轮廓保存。
static int getContoursByCplus(char* Imgname, double minarea, double whRatio)
{
cv::Mat src, dst, canny_output;
/// Load source image and convert it to gray
src = imread(Imgname, ); if (!src.data)
{
std::cout << "read data error!" << std::endl;
return -;
}
blur(src, src, Size(, )); //the pram. for findContours,
vector<vector<Point> > contours;
vector<Vec4i> hierarchy; /// Detect edges using canny
Canny(src, canny_output, , , );
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(, ));
//CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE double maxarea = ;
int maxAreaIdx = ; for (int i = ; i<contours.size(); i++)
{ double tmparea = fabs(contourArea(contours[i]));
if (tmparea>maxarea)
{
maxarea = tmparea;
maxAreaIdx = i;
continue;
} if (tmparea < minarea)
{
// *** 删除面积小于设定值的轮廓
contours.erase(contours.begin() + i);
std::wcout << "delete a small area" << std::endl;
continue;
}
//计算轮廓的直径宽高
Rect aRect =boundingRect(contours[i]);
if ((aRect.width / aRect.height)<whRatio)
{
// *** 删除宽高比例小于设定值的轮廓
contours.erase(contours.begin() + i);
std::wcout << "delete a unnomalRatio area" << std::endl;
continue;
}
}
/// Draw contours,彩色轮廓
dst= Mat::zeros(canny_output.size(), CV_8UC3);
for (int i = ; i< contours.size(); i++)
{
//随机颜色
Scalar color = Scalar(rng.uniform(, ), rng.uniform(, ), rng.uniform(, ));
drawContours(dst, contours, i, color, , , hierarchy, , Point());
}
// Create Window
char* source_window = "countors";
namedWindow(source_window, CV_WINDOW_NORMAL);
imshow(source_window, dst);
cv:; waitKey(); return ;
}
[OpenCV] Samples 04: contours2的更多相关文章
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- [OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
- [OpenCV] Samples 12: laplace
先模糊再laplace,也可以替换为sobel等. 变换效果后录成视频,挺好玩. #include "opencv2/videoio/videoio.hpp" #include & ...
- [OpenCV] Samples 05: convexhull
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边. 对于 ...
- [OpenCV] Samples 03: cout_mat
操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
随机推荐
- c#读取webconfig
string Conn_str = ConfigurationManager.AppSettings["connectionString"].ToString();
- 用Navicat Premium 远程连接oracle数据库
1.安装Navicat Premium软件(我的是11.0.7版本)(假设安装路径为D:\NavicatLite\Navicat Premium) 2.下载 instantclient-basic-n ...
- 大型B2B网站开发手记 2
刚开始做功能的时候,发现有个“面包屑”导航的功能穿插到了所有的页面.这个看似不起眼的小功能以前没有注意过,现在决定来实现一下 所谓面包屑,即页面层级导航,例如 首页>>我的博客>&g ...
- Oracle第三方ado.net数据提供程序
原文地址:http://www.infoq.com/cn/news/2009/06/oracleclient_deprecated 这项决定有部分原因是基于目前Oracle的第三方ADO.NET数据提 ...
- git版本管理策略及相关技巧(A)
公司几乎所有的项目都是使用 git 仓库来管理代码,以前对 git 只有些肤浅的了解,每次提交代码或者上线的时候总是会提心吊胆,生怕出现一些未知的问题.经过三个月的踩坑和填坑, git 操作颇显成熟. ...
- 如何在CRM系统中集成ActiveReports最终报表设计器
有时候,将ActiveReports设计器集成到业务系统中,为用户提供一些自定义的数据表,用户不需要了解如何底层的逻辑关系和后台代码,只需要选择几张关联的数据表,我们会根据用户的选择生成可供用户直接使 ...
- MySQL记录
1.unixtime和可读时间的转换 unixtime是距"1970-01-01 08:00:00"的时间秒数 unixtime -> readable select fro ...
- AutoMapper的简单使用
接触AutoMapper已经有两年多的时间了,在ORM框架中,它使持久层对象与DTO对象之间的转换变得相当简单. 随着负责的项目的增多,使用的技术框架一多起来,很多具体的技术点难免记不清, 加上同时兼 ...
- js中setTimeout()的使用bug
今天用setTimeout()时,遇到一个奇怪的现象,通过多方面的查询,最终解决了问题,这是setTimeout()设计的时候存在的一点点bug. 代码的作用主要是在三秒后自动关闭本浏览器窗口: 代码 ...
- iOS基本动画/关键帧动画/利用缓动函数实现物理动画效果
先说下基本动画部分 基本动画部分比较简单, 但能实现的动画效果也很局限 使用方法大致为: #1. 创建原始UI或者画面 #2. 创建CABasicAnimation实例, 并设置keypart/dur ...