一、关系

  MongoDB 的关系表示多个文档之间在逻辑上的相互联系。文档间可以通过嵌入和引用来建立联系。MongoDB 中的关系可以是:1对1,1对多,多对1,多对多。

一个用户可以用多个地址,这是典型的一对多关系。

  user文档可以是:

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"name": "Tom Hanks",
"contact": "987654321",
"dob": "01-01-1991"
}

  address文档可以是:

{
"_id":ObjectId("52ffc4a5d85242602e000000"),
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"
}

  1、嵌入式关系

  使用嵌入式方法,可以把地址文档嵌入到用户的文档中

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address": [
{
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"
},
{
"building": "170 A, Acropolis Apt",
"pincode": 456789,
"city": "Chicago",
"state": "Illinois"
}]
}

  如果这样保存的话可以这样获取用户的地址:

db.users.findOne({"name":"Tom Benzamin"},{"address":1})

  这种数据结构的缺点是,如果用户和用户地址在不断增加,数据量不断变大,会影响读写性能。

  2、引用式方法

  这种方法类似于关系型数据库中的外键,将address的_id存到user文档中

  

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address_ids": [
ObjectId("52ffc4a5d85242602e000000"),
ObjectId("52ffc4a5d85242602e000001")
]
}

  我们可以读取这些用户地址的对象id(ObjectId)来获取用户的详细地址信息。这种方法需要两次查询,第一次查询用户地址的对象id(ObjectId),第二次通过查询的id获取用户的详细地址信息。

  

var result = db.users.findOne({"name":"Tom Benzamin"},{"address_ids":1})
var addresses = db.address.find({"_id":{"$in":result["address_ids"]}})

二、数据库引用

  mongodb的引用有两种:手动引用(Manual References)与 DBRefs

  如果我们在不同的集合中 (address_home, address_office, address_mailing, 等)存储不同的地址(住址,办公室地址,邮件地址等)。这时候我们在调用不同地址时,也需要指定集合,一个文档从多个集合引用文档,我们应该使用 DBRefs。

  DBRef的形式:

{ $ref : , $id : , $db :  }

  其中$ref:集合名称,$id:引用的id,$db:数据库名称(可选)。

  以下实例中用户数据文档使用了 DBRef, 字段 address:

{
"_id":ObjectId("53402597d852426020000002"),
"address": {
"$ref": "address_home",
"$id": ObjectId("534009e4d852427820000002"),
"$db": "w3cschoolcc"},
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin"
}

  address DBRef 字段指定了引用的地址文档是在 address_home 集合下的 w3cschoolcc 数据库,id 为 534009e4d852427820000002。

  以下代码中,我们通过指定 $ref 参数(address_home 集合)来查找集合中指定id的用户地址信息:

var user = db.users.findOne({"name":"Tom Benzamin"})
var dbRef = user.address
db[dbRef.$ref].findOne({"_id":(dbRef.$id)})

  以上实例返回了 address_home 集合中的地址数据:

{
"_id" : ObjectId("534009e4d852427820000002"),
"building" : "22 A, Indiana Apt",
"pincode" : 123456,
"city" : "Los Angeles",
"state" : "California"
}

三、覆盖索引查询

  覆盖查询是以下的查询:

  • 所有的查询字段是索引的一部分
  • 所有的查询返回字段在同一个索引中

  

  由于所有出现在查询中的字段是索引的一部分, MongoDB 无需在整个数据文档中检索匹配查询条件和返回使用相同索引的查询结果。因为索引存在于RAM中,从索引中获取数据比通过扫描文档读取数据要快得多。

  例:user集合:

{
"_id": ObjectId("53402597d852426020000002"),
"contact": "987654321",
"dob": "01-01-1991",
"gender": "M",
"name": "Tom Benzamin",
"user_name": "tombenzamin"
}

  创建联合索引,字段为gender和user_name

db.users.ensureIndex({gender:1,user_name:1})

  现在,该索引会覆盖以下查询:

db.users.find({gender:"M"},{user_name:1,_id:0})

  对于上述查询,MongoDB的不会去数据库文件中查找。相反,它会从索引中提取数据,这是非常快速的数据查询。由于我们的索引中不包括 _id 字段,_id在查询中会默认返回,我们可以在MongoDB的查询结果集中排除它。下面的实例没有排除_id,查询就不会被覆盖:

db.users.find({gender:"M"},{user_name:1})

  如果所有索引字段是一个数组则不能使用覆盖索引查询,所有索引字段是一个子文档。

mongodb 关系、引用、覆盖索引查询的更多相关文章

  1. MongoDB 覆盖索引查询

    MongoDB 覆盖索引查询 官方的MongoDB的文档中说明,覆盖查询是以下的查询: 所有的查询字段是索引的一部分 所有的查询返回字段在同一个索引中 由于所有出现在查询中的字段是索引的一部分, Mo ...

  2. MongoDB覆盖索引查询

    官方的MongoDB的文档中说明,覆盖查询是以下的查询: 1. 所有的查询字段是索引的一部分 2. 所有的查询返回字段在同一个索引中 由于所有出现在查询中的字段是索引的一部分, MongoDB 无需在 ...

  3. mysql优化-覆盖索引查询,join

    1 原始sql: SELECT a.* FROM event_data a WHERE a.receive_time >= '2018-03-28 00:00:00' AND a.receive ...

  4. SQL Server查询性能优化——覆盖索引(二)

    在SQL Server 查询性能优化——覆盖索引(一)中讲了覆盖索引的一些理论. 本文将具体讲一下使用不同索引对查询性能的影响. 下面通过实例,来查看不同的索引结构,如聚集索引.非聚集索引.组合索引等 ...

  5. MYSQL的全表扫描,主键索引(聚集索引、第一索引),非主键索引(非聚集索引、第二索引),覆盖索引四种不同查询的分析

    文章出处:http://inter12.iteye.com/blog/1430144 MYSQL的全表扫描,主键索引(聚集索引.第一索引),非主键索引(非聚集索引.第二索引),覆盖索引四种不同查询的分 ...

  6. SQL Server 查询性能优化——覆盖索引

    覆盖索引又可以称为索引覆盖. 解释一: 就是select的数据列只用从索引中就能够取得,不必从数据表中读取,换句话说查询列要被所使用的索引覆盖. 解释二: 索引是高效找到行的一个方法,当能通过检索索引 ...

  7. 在MySQL中如何使用覆盖索引优化limit分页查询

    背景 今年3月份时候,线上发生一次大事故.公司主要后端服务器发生宕机,所有接口超时.宕机半小时后,又自动恢复正常.但是过了2小时,又再次发生宕机. 通过接口日志,发现MySQL数据库无法响应服务器.在 ...

  8. mysql高效索引之覆盖索引

    概念 如果索引包含所有满足查询需要的数据的索引成为覆盖索引(Covering Index),也就是平时所说的不需要回表操作 判断标准 使用explain,可以通过输出的extra列来判断,对于一个索引 ...

  9. mysql索引之六:mysql高效索引之覆盖索引

    概念 如果索引包含所有满足查询需要的数据的索引成为覆盖索引(Covering Index),也就是平时所说的不需要回表操作 判断标准 使用explain,可以通过输出的extra列来判断,对于一个索引 ...

随机推荐

  1. JS动态级联菜单

    JS动态级联菜单是前端常用的一个功能,特此抽时间研究了下,附上代码 <html> <head> <meta charset="utf-8" /> ...

  2. Java学习日记之 Java-其他类型

    OK , 就绪, 第一篇博客开撸 ~ 先听了毕姥爷激情澎湃的其他类型 ,从这里开始入手吧 : (一)System类  System类代表系统类,系统的属性和方法都放在该类.System类是一个fina ...

  3. C++函数返回局部指针变量

    遇到过好几次关于函数返回指针变量问题,有时候是可以的,有时候是不可以的,然后就混乱了.今天研究了下,结果发现原来和内存分配有关. 用下面的例子分析下吧: char * test() { char a[ ...

  4. iOS 笔记

    1. 使用断言NSAssert()调试程序错误 NSAssert()只是一个宏,用于开发阶段调试程序中的Bug,通过为NSAssert()传递条件表达式来断定是否属于Bug,满足条件返回真值,程序继续 ...

  5. 【原创】--linux平台下opencv安装

    1.到opencv官网下载源码 也可以下载此链接http://pan.baidu.com/s/1mgId5ZM 2.解压到任意目录 可以使用右键-提取到此处,也可以在命令行中使用指令解压(linux中 ...

  6. PADS从原理图到PCB整体简易流程

    10步完成PADS从原理图到PCB设计 图片有点大,可以点击观看. 第一步:启动PADS LOGIC 第二步:添加元器件 第三步:选择2个9脚接插头放置在原理图上 第四步:添加连线. 完成后如图 第五 ...

  7. storysnail的Windows串口编程笔记

    storysnail的Windows串口编程笔记 作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创代码根据 ...

  8. android wireshark抓包和fiddler抓包

    一 wireshark 1.把电脑的网络做为热点 2.开启wifi热点后,被测手机连接到该热点: 3.启动wireshark,选择做为热点的网卡,点击start开始抓包: 4.操作手机,可以抓取到手机 ...

  9. 【Python】调用WPS V9 API,实现PPT转PDF

    WPS 的API,即COM,主要分为V8与V9两个版本,网上容易查到的例子,都是V8的. 现在官网上可以下载的,2013抢鲜版,就是V9的API. Python 调用COM 需要安装 Python f ...

  10. C#中使用OpenSSL的公钥加密/私钥解密

    在C#中进行公钥加密/私钥解密,需要用RSACryptoServiceProvider,但是它不支持由OpenSSL生成的公钥/私钥字符串. 比如这样的公钥/私钥对( 公私钥生成方法见 http:// ...