Spark机器学习示例
1. Java代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package com.XXX.YYY.hello; import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.classification.LogisticRegressionWithSGD;
import org.apache.spark.mllib.classification.LogisticRegressionModel;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.linalg.DenseVector;
/**
* Logistic regression based classification using ML Lib.
*/
public final class JavaLR { static class ParsePoint implements Function<String, LabeledPoint> {
private static final Pattern COMMA = Pattern.compile(",");
private static final Pattern SPACE = Pattern.compile(" "); @Override
public LabeledPoint call(String line) {
String[] parts = COMMA.split(line);
double y = Double.parseDouble(parts[0]);
String[] tok = SPACE.split(parts[1]);
double[] x = new double[tok.length];
for (int i = 0; i < tok.length; ++i) {
x[i] = Double.parseDouble(tok[i]);
}
return new LabeledPoint(y, Vectors.dense(x));
}
} public static void main(String[] args) {
if (args.length != 3) {
System.err.println("Usage: JavaLR <input_dir> <step_size> <niters>");
System.exit(1);
}
SparkConf sparkConf = new SparkConf().setAppName("JavaLR");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<String> lines = sc.textFile(args[0]);
JavaRDD<LabeledPoint> points = lines.map(new ParsePoint()).cache();
double stepSize = Double.parseDouble(args[1]);
int iterations = Integer.parseInt(args[2]); // Another way to configure LogisticRegression
//
// LogisticRegressionWithSGD lr = new LogisticRegressionWithSGD();
// lr.optimizer().setNumIterations(iterations)
// .setStepSize(stepSize)
// .setMiniBatchFraction(1.0);
// lr.setIntercept(true);
// LogisticRegressionModel model = lr.train(points.rdd()); LogisticRegressionModel model = LogisticRegressionWithSGD.train(points.rdd(),
iterations, stepSize); System.out.print("Final w: " + model.weights() + "and intercept is " + model.intercept() + "\n");
double[] point = new double[2];
point[0] = 8;
point[1] = 8;
double label = model.predictPoint(new DenseVector(point), model.weights(), model.intercept());
System.out.print("label for [" + point[0] + " " + point[1] + "] is " + label + "\n");
sc.stop();
}
}
2. 数据文件
0,0 0
0,1 2
0,1 3
0,2 1
0,3 1
0,2 2
1,6 5
1,7 6
1,8 6
1,6 7
3. 执行命令
# spark-submit --class com.XXX.YYY.hello.JavaLR --master yarn --deploy-mode cluster ./hello-1.0-SNAPSHOT-jar-with-dependencies.jar /lr.training.txt 0.2 100
/lr.training.txt放在hadoop的根目录
4. 执行结果
Final w: [0.1618320065279109,0.03974871803971457]and intercept is 0.0
label for [8.0 8.0] is 1.0
Spark机器学习示例的更多相关文章
- Spark机器学习· 实时机器学习
Spark机器学习 1 在线学习 模型随着接收的新消息,不断更新自己:而不是像离线训练一次次重新训练. 2 Spark Streaming 离散化流(DStream) 输入源:Akka actors. ...
- Spark机器学习 Day2 快速理解机器学习
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这 ...
- Spark机器学习 Day1 机器学习概述
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源 ...
- Spark机器学习笔记一
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spa ...
- Spark机器学习之协同过滤算法
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...
- 2019-1-18 Spark 机器学习
2019-1-18 Spark 机器学习 机器学习 模MLib板 预测 //有视频 后续会补充 1547822490122.jpg 1547822525716.jpg 1547822330358.jp ...
- Spark机器学习解析下集
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l 构造条件概率:回归分 ...
- Spark机器学习8· 文本处理(spark-shell)
Spark机器学习 自然语言处理(NLP,Natural Language Processing) 提取特征 建模 机器学习 TF-IDF(词频 term frequency–逆向文件频率 inver ...
- Spark机器学习7·降维模型(scala&python)
PCA(主成分分析法,Principal Components Analysis) SVD(奇异值分解法,Singular Value Decomposition) http://vis-www.cs ...
随机推荐
- mac安装 Vitual box 虚拟机(window8.1)
首先到Oracle官网下载oracle VM VB,这是一个开源的免费项目,如果你想要了解更多的话甚至可以下载它的source code http://www.oracle.com/technetwo ...
- Spring MVC上传文件
Spring MVC上传文件 1.Web.xml中加入 <servlet> <servlet-name>springmvc</servlet-name> <s ...
- sublime3添加对react代码检查
安装eslint npm install -g eslint npm install -g eslint-plugin-react 安装完后调用eslint --init 初始化,生成.eslintr ...
- windows下的c语言和linux 下的c语言以及C标准库和系统API
1.引出我们的问题? 标准c库都是一样的!大家想必都在windows下做过文件编程,在linux下也是一样的函数名,参数都一样.当时就有了疑问,因为我们非常清楚 其本质是不可能一样的,源于这是俩个操作 ...
- Python3基础 访问列表 两个索引值之间的所有元素
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...
- iOS10通知框架UserNotification理解与应用
iOS10通知框架UserNotification理解与应用 一.引言 关于通知,无论与远程Push还是本地通知,以往的iOS系统暴漏给开发者的接口都是十分有限的,开发者只能对标题和内容进行简单的定义 ...
- boldSystemFontOfSize 和 systemFontOfSize 的区别
使用 UIFont 的下列方法: + systemFontOfSize + boldSystemFontOfSize + italicSystemFontOfSize p.p1 { margin: 0 ...
- tzwhere模块 根据经纬度判断时区
先说一说这个问题的误区: 1: 根据地理常识,我们知道时区有24个,经度/15=商+余数,此时的商就是是时区,给大组长说了一下,不沾边 又过了几天 2:发现django自带的模块timezone,也叫 ...
- 【干货】微信场景之H5页面制作免费工具大集合
营销代有手段出,各领风骚数百天.要说现在哪些营销方式最能传播,屡屡刷爆朋友圈的H5页面肯定就是首当其冲的,提到H5页面,就立马想到"围住神经猫",上线微信朋友圈3天的时间便创造了用 ...
- rgb转16进制 简单实现
function rgbToHex(r, g, b) { return ((r << 16) | (g << 8) | b).toString(16); }