原文来自 ideawu 构建C1000K的服务器(1) – 基础

著名的 C10K 问题提出的时候, 正是 2001 年, 到如今 12 年后的 2013 年, C10K 已经不是问题了, 任何一个普通的程序员, 都能利用手边的语言和库, 轻松地写出 C10K 的服务器. 这既得益于软件的进步, 也得益于硬件性能的提高.

现在, 该是考虑 C1000K, 也就是百万连接的问题的时候了. 像 Twitter, weibo, Facebook 这些网站, 它们的同时在线用户有上千万, 同时又希望消息能接近实时地推送给用户, 这就需要服务器能维持和上千万用户的 TCP 网络连接, 虽然可以使用成百上千台服务器来支撑这么多用户, 但如果每台服务器能支持一百万连接(C1000K), 那么只需要十台服务器.

有很多技术声称能解决 C1000K 问题, 例如 Erlang, Java NIO 等等, 不过, 我们应该首先弄明白, 什么因素限制了 C1000K 问题的解决. 主要是这几点:

  1. 操作系统能否支持百万连接?
  2. 操作系统维持百万连接需要多少内存?
  3. 应用程序维持百万连接需要多少内存?
  4. 百万连接的吞吐量是否超过了网络限制?

下面来分别对这几个问题进行分析.

1. 操作系统能否支持百万连接?

对于绝大部分 Linux 操作系统, 默认情况下确实不支持 C1000K! 因为操作系统包含最大打开文件数(Max Open Files)限制, 分为系统全局的, 和进程级的限制.

全局限制

在 Linux 下执行:

cat /proc/sys/fs/file-nr

会打印出类似下面的一行输出:

5100	0	101747

第三个数字 101747 就是当前系统的全局最大打开文件数(Max Open Files), 可以看到, 只有 10 万, 所以, 在这台服务器上无法支持 C1000K. 很多系统的这个数值更小, 为了修改这个数值, 用 root 权限修改 /etc/sysctl.conf 文件:

fs.file-max = 1020000
net.ipv4.ip_conntrack_max = 1020000
net.ipv4.netfilter.ip_conntrack_max = 1020000

进程限制

执行:

ulimit -n

输出:

1024

说明当前 Linux 系统的每一个进程只能最多打开 1024 个文件. 为了支持 C1000K, 你同样需要修改这个限制.

临时修改

ulimit -n 1020000

不过, 如果你不是 root, 可能不能修改超过 1024, 会报错:

-bash: ulimit: open files: cannot modify limit: Operation not permitted

永久修改

编辑 /etc/security/limits.conf 文件, 加入如下行:

# /etc/security/limits.conf
work hard nofile 1020000
work soft nofile 1020000

第一列的 work 表示 work 用户, 你可以填 *, 或者 root. 然后保存退出, 重新登录服务器.

注意: Linux 内核源码中有一个常量(NR_OPEN in /usr/include/linux/fs.h), 限制了最大打开文件数, 如 RHEL 5 是 1048576(2^20), 所以, 要想支持 C1000K, 你可能还需要重新编译内核.

2. 操作系统维持百万连接需要多少内存?

解决了操作系统的参数限制, 接下来就要看看内存的占用情况. 首先, 是操作系统本身维护这些连接的内存占用. 对于 Linux 操作系统, socket(fd) 是一个整数, 所以, 猜想操作系统管理一百万个连接所占用的内存应该是 4M/8M, 再包括一些管理信息, 应该会是 100M 左右. 不过, 还有 socket 发送和接收缓冲区所占用的内存没有分析. 为此, 我写了最原始的 C 网络程序来验证:

服务器

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <sys/select.h> #define MAX_PORTS 10 int main(int argc, char **argv){
struct sockaddr_in addr;
const char *ip = "0.0.0.0";
int opt = 1;
int bufsize;
socklen_t optlen;
int connections = 0;
int base_port = 7000;
if(argc > 2){
base_port = atoi(argv[1]);
} int server_socks[MAX_PORTS]; for(int i=0; i<MAX_PORTS; i++){
int port = base_port + i;
bzero(&addr, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons((short)port);
inet_pton(AF_INET, ip, &addr.sin_addr); int serv_sock;
if((serv_sock = socket(AF_INET, SOCK_STREAM, 0)) == -1){
goto sock_err;
}
if(setsockopt(serv_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) == -1){
goto sock_err;
}
if(bind(serv_sock, (struct sockaddr *)&addr, sizeof(addr)) == -1){
goto sock_err;
}
if(listen(serv_sock, 1024) == -1){
goto sock_err;
} server_socks[i] = serv_sock;
printf("server listen on port: %d\n", port);
} //optlen = sizeof(bufsize);
//getsockopt(serv_sock, SOL_SOCKET, SO_RCVBUF, &bufsize, &optlen);
//printf("default send/recv buf size: %d\n", bufsize); while(1){
fd_set readset;
FD_ZERO(&readset);
int maxfd = 0;
for(int i=0; i<MAX_PORTS; i++){
FD_SET(server_socks[i], &readset);
if(server_socks[i] > maxfd){
maxfd = server_socks[i];
}
}
int ret = select(maxfd + 1, &readset, NULL, NULL, NULL);
if(ret < 0){
if(errno == EINTR){
continue;
}else{
printf("select error! %s\n", strerror(errno));
exit(0);
}
} if(ret > 0){
for(int i=0; i<MAX_PORTS; i++){
if(!FD_ISSET(server_socks[i], &readset)){
continue;
}
socklen_t addrlen = sizeof(addr);
int sock = accept(server_socks[i], (struct sockaddr *)&addr, &addrlen);
if(sock == -1){
goto sock_err;
}
connections ++;
printf("connections: %d, fd: %d\n", connections, sock);
}
}
} return 0;
sock_err:
printf("error: %s\n", strerror(errno));
return 0;
}

注意, 服务器监听了 10 个端口, 这是为了测试方便. 因为只有一台客户端测试机, 最多只能跟同一个 IP 端口创建 30000 多个连接, 所以服务器监听了 10 个端口, 这样一台测试机就可以和服务器之间创建 30 万个连接了.

客户端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/tcp.h> int main(int argc, char **argv){
if(argc <= 2){
printf("Usage: %s ip port\n", argv[0]);
exit(0);
} struct sockaddr_in addr;
const char *ip = argv[1];
int base_port = atoi(argv[2]);
int opt = 1;
int bufsize;
socklen_t optlen;
int connections = 0; bzero(&addr, sizeof(addr));
addr.sin_family = AF_INET;
inet_pton(AF_INET, ip, &addr.sin_addr); char tmp_data[10];
int index = 0;
while(1){
if(++index >= 10){
index = 0;
}
int port = base_port + index;
printf("connect to %s:%d\n", ip, port); addr.sin_port = htons((short)port); int sock;
if((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1){
goto sock_err;
}
if(connect(sock, (struct sockaddr *)&addr, sizeof(addr)) == -1){
goto sock_err;
} connections ++;
printf("connections: %d, fd: %d\n", connections, sock); if(connections % 10000 == 9999){
printf("press Enter to continue: ");
getchar();
}
usleep(1 * 1000);
/*
bufsize = 5000;
setsockopt(serv_sock, SOL_SOCKET, SO_SNDBUF, &bufsize, sizeof(bufsize));
setsockopt(serv_sock, SOL_SOCKET, SO_RCVBUF, &bufsize, sizeof(bufsize));
*/
} return 0;
sock_err:
printf("error: %s\n", strerror(errno));
return 0;
}

我测试 10 万个连接, 这些连接是空闲的, 什么数据也不发送也不接收. 这时, 进程只占用了不到 1MB 的内存. 但是, 通过程序退出前后的 free 命令对比, 发现操作系统用了 200M(大致)内存来维护这 10 万个连接! 如果是百万连接的话, 操作系统本身就要占用 2GB 的内存! 也即 2KB 每连接.

可以修改

/proc/sys/net/ipv4/tcp_wmem
/proc/sys/net/ipv4/tcp_rmem

来控制 TCP 连接的发送和接收缓冲的大小(多谢 @egmkang).

3. 应用程序维持百万连接需要多少内存?

通过上面的测试代码, 可以发现, 应用程序维持百万个空闲的连接, 只会占用操作系统的内存, 通过 ps 命令查看可知, 应用程序本身几乎不占用内存.

4. 百万连接的吞吐量是否超过了网络限制?

假设百万连接中有 20% 是活跃的, 每个连接每秒传输 1KB 的数据, 那么需要的网络带宽是 0.2M x 1KB/s x 8 = 1.6Gbps, 要求服务器至少是万兆网卡(10Gbps).

总结

Linux 系统需要修改内核参数和系统配置, 才能支持 C1000K. C1000K 的应用要求服务器至少需要 2GB 内存, 如果应用本身还需要内存, 这个要求应该是至少 10GB 内存. 同时, 网卡应该至少是万兆网卡.

当然, 这仅仅是理论分析, 实际的应用需要更多的内存和 CPU 资源来处理业务数据.

参考:

http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/
http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/

【转】构建C1000K的服务器(1) – 基础的更多相关文章

  1. 2013-09-16 构建C1000K的服务器(1) – 基础

    http://www.ideawu.net/blog/archives/740.html 著名的 C10K 问题提出的时候, 正是 2001 年, 到如今 12 年后的 2013 年, C10K 已经 ...

  2. 构建C1000K的服务器(1) – 基础

    转自: http://www.ideawu.net/blog/archives/740.html 著名的 C10K 问题提出的时候, 正是 2001 年, 到如今 12 年后的 2013 年, C10 ...

  3. 构建C1000K的服务器(2) – 实现百万连接的comet服务器

    转自:http://www.ideawu.net/blog/archives/742.html 这是关于 C1000K 序列文章的第二篇, 在前一篇文章 构建C1000K的服务器(1) – 基础 中, ...

  4. 利用openssl构建根证书-服务器证书-客户证书

    利用openssl构建根证书-服务器证书-客户证书 OpenSSL功能远胜于KeyTool,可用于根证书,服务器证书和客户证书的管理 一.构建根证书 1.构建根证书前,需要构建随机数文件(.rand) ...

  5. howto:在构建基于debian的docker基础镜像时,更换国内包源

    debian经常被用作构建应用镜像的基础镜像,如微软在构建linux下的dotnetcore基础镜像时,提供了基于debian 8(jessie)和debian 9(stretch)的镜像. 由于这些 ...

  6. 构建伪Update服务器工具isr-evilgrade

    构建伪Update服务器工具isr-evilgrade   现在大部分软件都提供更新功能.软件一旦运行,就自动检查对应的Update服务器.如果发现新版本,就会提示用户,并进行下载和安装.而用户往往相 ...

  7. C语言构建小型Web服务器

    #include <stdio.h> #include <sys/socket.h> #include <stdlib.h> #include <string ...

  8. 在NVIDIA-Jetson平台上构建智能多媒体服务器

    在NVIDIA-Jetson平台上构建智能多媒体服务器 Building a Multi-Camera Media Server for AI Processing on the NVIDIA Jet ...

  9. 自定义构建基于.net core 的基础镜像

    先说一个问题 首先记录一个问题,今天在用 Jenkins 构建项目的时候突然出现包源的错误: /usr/share/dotnet/sdk/2.2.104/NuGet.targets(114,5): e ...

随机推荐

  1. ICEM(2)—机翼翼稍网格绘制

    有时我们需要观察翼尖涡,这就需要将机翼全部被网格包围.但是网上比较多的教程都是机翼边缘即为网格边缘,机翼位于网格内部的不多.若是直接将网格拉伸,则会产生结构和非结构网格交错的情况.下面是绘制步骤 1. ...

  2. 计算机网络(11)-----TCP连接的建立和释放

    TCP连接的建立和释放 概述 TCP运输连接的建立和释放是每一次面向连接的通信中必不可少的过程,运输连接有三个阶段:连接建立,数据传送和连接释放. TCP连接的建立 如图所示,假定A主机是客户端程序, ...

  3. VScode调试Python

    第一步,确保装上了PYTHON扩展 然后打开文件夹(这个东西必须打开文件夹才能进行调试,不能打开一个文件就调试) 打开文件夹后,那里显示没有配置,这时需要你按下F5 弹出选择环境,点击Python 它 ...

  4. jsp学习之基于mvc学生管理系统的编写

    mvc开发模式:分别是 model层 view层 Control层 在学生管理系统中,model层有学生实体类,数据访问的dao层,view层主要是用于显示信息的界面,Control层主要是servl ...

  5. HOJ 1001: A+B; 1002: A+B+C

    两道水题,用来熟悉 HOJ 的提交系统. 1001:输入两个整数 A, B (0 <= A,B <= 10),输出 A+B. #include <iostream> using ...

  6. asp.net错误页和asp.net mvc错误页设置

    asp.net错误页 在日常项目开发过程中,我们需要给网站设置错误页和记录错误日志. 首先,在项目中添加全局应用程序类 在Global.asax中 protected void Application ...

  7. mysql启动报错The server quit without updating PID file

    现网mysql无法启动是很让人头疼的,数据很有可能恢复不了,解决方法如下: 查看mysql目录下的日志,根据日志来锁定错误原因(mysql的错误日志很抽象) a.如果日志不能提供任何帮助则可进行以下步 ...

  8. javap查看class文件

    通过JVM编译java文件生成class字节码文件,很多时候很想用工具打开看看,目前还不清楚哪一个软件专门查看class文件的,但是通过windows下的javap命令可以查看详细的class文件 S ...

  9. JAVA编程讲座-吴老

    JAVA系列公开课第4讲:多态系列课程:从JAVA编程零基础讲起,同时结合工作中遇到的具体实例,语言清晰易懂,连续10周+深入讲解,打下编程基础,让我们一起打来自动化测试的大门时间:4月25日(周一) ...

  10. swift 构建类

    参开 http://blog.csdn.net/chelongfei/article/details/49784633 在 Swift 中, 类的初始化有两种方式, 分别是 Designated In ...