Katu Puzzle

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6714   Accepted: 2472

Description

Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

Xa op Xb = c

The calculating rules are:

AND 0 1
0 0 0
1 0 1
OR 0 1
0 0 1
1 1 1
XOR 0 1
0 0 1
1 1 0

Given a Katu Puzzle, your task is to determine whether it is solvable.

Input

The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

Output

Output a line containing "YES" or "NO".

Sample Input

4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR

Sample Output

YES

Hint

X0 = 1, X1 = 1, X2 = 0, X3 = 1.

Source

 
先进性tarjan算法找出强连通分量,判断每个点的取值是否矛盾,矛盾即为对于题意中每个点的0,1是否存在于一个强连通分量中,矛盾输出NO,不矛盾输出1;
建图规则:
a & b = 1 等价于 !a->a, !b->b;(旨在使得a或b取值为0是产生矛盾)
a & b = 0 等价于 a->!b, b->!a;
a | b = 1  等价于 !a->b, !b->a;
a | b = 0  等价于 a->!a, b->!b;
a ^ b = 1 等价于 !a->b, !b->a, a->!b, b->!a;
a ^ b = 0 等价于 a->b, b->a, !a->!b, !b->!a;  
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAX = 1005 * 2;
int n,m;
int head[MAX];
struct node {
int t,next;
}edge[4000000];
int cnt;
void add(int u, int v) {
edge[cnt].t = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
int bfn[MAX];
int low[MAX];
int vis[MAX];
int s[MAX];
int sn;
void tarbfs(int u, int lay, int & scc_num) {
vis[u] = 1;
bfn[u] = low[u] = lay;
s[sn++] = u;
int i;
for (i = head[u]; i != -1; i = edge[i].next) {
int tmp = edge[i].t;
if (!vis[tmp])tarbfs(tmp, ++lay, scc_num);
if (vis[tmp] == 1)low[u] = min(low[u], low[tmp]);
}
if (low[u] == bfn[u]) {
scc_num++;
while (1) {
sn--;
vis[s[sn]] = 2;
low[s[sn]] = scc_num;
if (s[sn] == u)break;
}
}
}
int tarjan() {
int scc_num = 0;
int lay = 1;
int i;
sn = 0;
memset(vis, 0, sizeof(vis));
for (i = 0; i < n; i++) {
if (!vis[i])
tarbfs(i, lay, scc_num);
}
return scc_num;
} int main() {
// freopen("in.txt","r",stdin);
int a,b,c;
char ch[5];
int i;
while (scanf("%d %d",&n,&m) != EOF) {
memset(head, -1, sizeof(head));
n = 2 * n;
cnt = 0;
for (i = 0; i < m; i++) {
scanf("%d %d %d %s",&a,&b,&c,ch);
if (ch[0] == 'A') {
if (c == 1) {
add(a<<1, a<<1|1);
add(b<<1, b<<1|1);
} else {
add(a<<1|1, b<<1);
add(b<<1|1, a<<1);
}
} else if (ch[0] == 'O') {
if (c == 1) {
add(a<<1, b<<1|1);
add(b<<1, a<<1|1);
} else {
add(a<<1|1, a<<1);
add(b<<1|1, b<<1);
}
} else {
if (c == 1) {
add(a<<1|1, b<<1);
add(b<<1|1, a<<1);
add(a<<1, b<<1|1);
add(b<<1, a<<1|1);
} else {
add(a<<1|1, b<<1|1);
add(b<<1|1, a<<1|1);
add(a<<1, b<<1);
add(b<<1, a<<1);
}
}
}
tarjan();
int flag = 0;
for (i = 0; i < n / 2; i++) {
if (low[i<<1] == low[i<<1|1]) {
flag = 1;
break;
}
}
if (flag)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}

  

poj3678 Katu Puzzle 2-SAT的更多相关文章

  1. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  2. POJ-3678 Katu Puzzle 2sat

    题目链接:http://poj.org/problem?id=3678 分别对and,or,xor推出相对应的逻辑关系: 逻辑关系 1 0  A and B     A'->A,B'->B ...

  3. poj 3678 Katu Puzzle(Two Sat)

    题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...

  4. POJ3678 Katu Puzzle

    原题链接 \(2-SAT\)模板题. 将\(AND,OR,XOR\)转换成\(2-SAT\)的命题形式连边,用\(tarjan\)求强连通分量并检验即可. #include<cstdio> ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  7. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  8. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

  9. poj 3678 Katu Puzzle 2-SAT 建图入门

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

随机推荐

  1. 使用的 SQL Server 版本不支持数据类型“datetime2”.

    错误原因,在使用ado.net entity的时候,entity使用的数据库是sqlserver 2008, 但后来实际使用中使用的数据库是sqlserver 2005, 使用的 SQL Server ...

  2. Linux 开机启动

    Linux开机启动(bootstrap)   作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 计算机开机是一个神秘的过程.我们只是 ...

  3. 网络编程(一):用C#下载网络文件的2种方法

    使用C#下载一个Internet上的文件主要是依靠HttpWebRequest/HttpWebResonse和WebClient.具体处理起来还有同步和异步两种方式,所以我们其实有四种组合. 1.使用 ...

  4. 说说无耻的商河水木清华开发商2013"交房

    说说无耻的水木清华开发商2013"交房" 我买的是22号楼,合同里写的是2011年6月30号前交房.4月28我手机响了,电话那边说是水木清华的,29号交房.说交房通知书已经EMS发 ...

  5. linux svn 用户配置

    1:创建存放仓库的目录 mkdir -p /home/svn/ 2:创建svn仓库 svnadmin create /home/svn/evansource 3:配置仓库(一共三个文件夹auzhz.p ...

  6. Good Practices to Write Stored Procedures in SQL Server

    Reference to: http://www.c-sharpcorner.com/UploadFile/skumaar_mca/good-practices-to-write-the-stored ...

  7. HandlerThread和IntentService

    HandlerThread 为什么要使用HandlerThread? 我们经常使用的Handler来处理消息,其中使用Looper来对消息队列进行轮询,并且默认是发生在主线程中,这可能会引起UI线程的 ...

  8. 如何在IDEA上创建Spring MVC项目

    对于刚刚从eclipse.myeclipse转到IDEA工具,在搭建项目遇到了一些问题,所以让我来分享我的搭建过程. 建议大家准备java环境.IDEA工具.tomcat.maven了,还有我是win ...

  9. C#中用RichTextBox实现图文混排和保存的例子

    using System; using System.Collections.Generic; using System.Drawing; using System.Windows.Forms; us ...

  10. Spring使用非applicationContext.xm 默认名的配置文件的配置

    Spring默认的配置文件是applicationContext.xml,但是有些时候,希望拆分Spring的配置文件,让其单一化,每一个都只进行自己的配置,如图所示 那么就需要在web.xml中配置 ...