Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15349   Accepted: 7379

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

 
题目意思:
给n,m1,m2
n头牛,每头牛跟其他的牛直接的距离有一定的约束
m1个约束1,m2个约束2
约束1:
a b c 表示a牛和b牛之间的距离最多c
约束2:
a b c 表示a牛和b牛之间的距离最少c
问你两头牛之间的最大距离至少是多少才能满足所有的约束
分析:
x[i]表示牛i的在x[i]处或者说牛i在距离原点x[i]的地方
约束1可以表示为:
x[a]-x[b]<=c
约束2可以表示为:
x[b]-x[a]<=-c
<=代表的是最大值,代表的是最短路,表达式形式为x[i]-x[j]<=c
按照j到i建图,权值为c
然后起点是1,跑个最短路(不能使用dj,因为存在负权)
1到n的最短路就是能满足所有牛约束的最小距离值
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww){}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=;i<max_v;i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=;j<G[u].size();j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=;j<G[u].size();j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,a,b;
while(~scanf("%d %d %d",&n,&a,&b))
{
init();
int x,y,w;
while(a--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(x,y))
G[x].push_back(node(y,w));
}
while(b--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(y,x))
G[y].push_back(node(x,-w));
}
int flag=spfa(,n);
if(flag==)
{
printf("-1\n");
}else if(dis[n]<INF)
{
printf("%lld\n",dis[n]);
}else
{
printf("-2\n");
}
}
return ;
}
/*
题目意思:
给n,m1,m2
n头牛,每头牛跟其他的牛直接的距离有一定的约束
m1个约束1,m2个约束2
约束1:
a b c 表示a牛和b牛之间的距离最多c
约束2:
a b c 表示a牛和b牛之间的距离最少c
问你两头牛之间的最大距离至少是多少才能满足所有的约束 分析:
x[i]表示牛i的在x[i]处或者说牛i在距离原点x[i]的地方 约束1可以表示为:
x[a]-x[b]<=c
约束2可以表示为:
x[b]-x[a]<=-c <=代表的是最大值,代表的是最短路,表达式形式为x[i]-x[j]<=c
按照j到i建图,权值为c
然后起点是1,跑个最短路(不能使用dj,因为存在负权)
1到n的最短路就是能满足所有牛约束的最小距离值 */

poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)的更多相关文章

  1. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  2. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  3. HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)

    World Exhibition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

  5. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  6. POJ 3169 Layout(差分约束+最短路)题解

    题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...

  7. poj 3169 Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6549   Accepted: 3168 Descriptio ...

  8. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

  9. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

随机推荐

  1. Codeforces633G(SummerTrainingDay06-I dfs序+线段树+bitset)

    G. Yash And Trees time limit per test:4 seconds memory limit per test:512 megabytes input:standard i ...

  2. mysql小试题3

    查询结果:

  3. 31:字符串p型编码

    31:字符串p型编码 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个完全由数字字符('0','1','2',…,'9')构成的字符串str,请写出s ...

  4. 水平方向margin:auto

    先上图   由图可看到,块级元素的水平方向上又"7大属性":margin-left.border-left.padding-left.margin-left.width.paddi ...

  5. Ubuntu16.04搭建kubernetes v1.11.2集群

    1.节点介绍         master      cluster-1      cluster-2      cluster-3 hostname        k8s-55      k8s-5 ...

  6. Microsoft MVP MSDN Magazine 最新期分享

    下载地址:http://1105insight.com/portal/wts/uemcmQeeDyaq%5Ev2gAe6c3b0Djd 可在线或下载查看

  7. Android Studio离线打包5+SDK

    dcloud官网下载最新版5+SDK 解压后,Android Studio导入HBuilder-Hello,选择From eclispe 修改assets/data/dcloud_control.xm ...

  8. View的layout机制

    View框架的工作流程为:测量每个View大小(measure)-->把每个View放置到相应的位置(layout)-->绘制每个View(draw). 源代码分析 在View的源代码中, ...

  9. Android 监听手机GPS打开状态

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/70854942 本文出自[赵彦军的博客] GPS_Presenter package ...

  10. 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集

    机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...