Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

Input

First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

Output

Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

The edges are numbered from 1 to m in order of their appearing in input.

Examples

Input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
Output
9
8
11
8
8
8
9 次小生成树模板:
lca+倍增+最小生成树
#define eps 1e-6
#define ll long long
#define pii pair<int, int>
#define pb push_back
#define mp make_pair
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<algorithm>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int N = ;
//*************************
int n, m;
//kruscal
struct tree
{
int a,b,w;
} p[N],s[N];
int p1[N];
int rk1[N];
//倍增
int fa[N][], max_e[N][], dep[N];
//lca
struct edge
{
int to, nxt,w;
} e[N<<];
int fst[N], tot;
struct query
{
int to,nxt;
int idx;
} Q[N<<];
int h[N],tt;
int p2[N],rk2[N];
int acr[N], ans[N];
bool vis[N];
//************************
void CLS()
{
tot = ;
memset(fst,-,sizeof(fst));
tt = ;
for(int i=; i<=n; i++)p1[i]=i,p2[i]=i;
memset(h,-,sizeof(h));
}
void add(int u,int v,int w)
{
e[++tot].to = v;
e[tot].w = w;
e[tot].nxt = fst[u];
fst[u] = tot;
}
void add_Q(int u,int v,int idx)
{
Q[++tt].to = v;
Q[tt].nxt = h[u];
Q[tt].idx = idx;
h[u] = tt;
}
//kruscal
bool cmp(tree x,tree y)
{
return x.w<y.w;
}
int find_p(int x)
{
return x == p1[x] ? x : p1[x]=find_p(p1[x]);
}
void uone1(int x,int y)
{
int t1=find_p(x);
int t2=find_p(y);
if(t1!=t2)
{
if(rk1[t1]>rk1[t2])p1[t2]=t1;
else p1[t1]=t2;
if(rk1[t1]==rk1[t2])rk1[t2]++;
}
}
ll kruscal()
{
ll res = ;
sort(p+, p+m+, cmp);
int cnt=;
for (int i = ; i <= m; i++)
{
int x=p[i].a;
int y=p[i].b;
int w=p[i].w;
if(find_p(x)!=find_p(y))
{
cnt++;
uone1(x,y);
res+=w;
add(x,y,w);
add(y,x,w);
if(cnt==n-)break;
}
}
return res;
} //倍增
void init_fa(int u, int p, int w)
{
dep[u] = dep[p] + ;
fa[u][] = p;
max_e[u][] = w;
for (int i = ; fa[u][i-]; i++)
{
fa[u][i] = fa[ fa[u][i-] ][i-];
max_e[u][i] = max(max_e[u][i-], max_e[ fa[u][i-] ][i-]);
}
} int cal(int u, int lca)
{
int d = dep[u] - dep[lca];
int res = ;
for(int i = ; i >= ; i--)
{
if ((<<i) <= d)
{
d -= (<<i);
res = max(res, max_e[u][i]);
u = fa[u][i];
}
}
return res;
} //LCA
int find_q(int x)
{
return x == p2[x] ? x : p2[x]=find_q(p2[x]);
}
void uone2(int x,int y)
{
int t1=find_q(x);
int t2=find_q(y);
if(t1!=t2)
{
if(rk2[t1]>rk2[t2])p2[t2]=t1;
else p2[t1]=t2;
if(rk2[t1]==rk2[t2])rk2[t2]++;
}
}
void LCA(int u)
{
vis[u] = ;
acr[u] = u;
for(int p = fst[u]; p != -; p = e[p].nxt)
{
int v = e[p].to;
if(vis[v]) continue;
init_fa(v, u, e[p].w);
LCA(v);
uone2(u,v);
acr[find_q(u)] = u;
}
for(int p = h[u]; p != -; p = Q[p].nxt)
{
int v = Q[p].to;
if(vis[v]) ans[Q[p].idx] = acr[find_q(v)];
}
} int main()
{
// freopen("input.txt", "r", stdin);
scanf("%d%d", &n, &m);
CLS();
for (int i = ; i <= m; i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
p[i].a=s[i].a=a;
p[i].b=s[i].b=b;
p[i].w=s[i].w=w;
add_Q(a,b,i);
add_Q(b,a,i);
}
ll tmp = kruscal();
LCA();
for (int i = ; i <= m; i++)
printf("%I64d\n", tmp+s[i].w-max(cal(s[i].a, ans[i]), cal(s[i].b, ans[i])));
return ;
}

609E- Minimum spanning tree for each edge的更多相关文章

  1. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  2. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge

    题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边) 分析:求出这个图的最小生成树,用最小生成树上的边建图 对于每条边,不外乎两种情况 1:该边就是最小生成树上的边,那么答案显然 2 ...

  4. codeforces 609E. Minimum spanning tree for each edge 树链剖分

    题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...

  5. cf 609E.Minimum spanning tree for each edge

    最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  7. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  10. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

随机推荐

  1. linux系统编程:进程控制(fork)

    在linux中,用fork来创建一个子进程,该函数有如下特点: 1)执行一次,返回2次,它在父进程中的返回值是子进程的 PID,在子进程中的返回值是 0.子进程想要获得父进程的 PID 需要调用 ge ...

  2. ThinkPHP5微信扫码支付

    1.把微信官网下载的demo放在根目录/vendor/目录下,这里我的是/vendor/wxpay_pc目录 2.把cert里面的文件替换成自己项目的证书(登陆微信商户平台,账户中心,API安全下载) ...

  3. Javascript 函数及其执行环境和作用域

    函数在javascript中可以说是一等公民,也是最有意思的事情,javascript函数其实也是一个对象,是Function类型的实例.因此声明一个函数首先可以使用 Function构造函数: va ...

  4. 【代码笔记】iOS-NSSearchPathForDirectoriesInDomainsDemo

    一,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, ...

  5. 【代码笔记】iOS-给密码进行加密

    一,工程图. 二,代码. #import "ViewController.h" #import "Base64CodeByteFunc.h" @interfac ...

  6. 排错-Error--memory violation  Exception ACCESS_VIOLATION received解决方

    Error -- memory violation : Exception ACCESS_VIOLATION received   by:授客 QQ:1033553122 测试代码: Action() ...

  7. mysql 安全模式

    今天,执行一条delete语句的时候报错如下: Error Code: 1175. You are using safe update mode and you tried to update a t ...

  8. Hibernate中Session.get()方法和load()方法的详细比较

    一.get方法和load方法的简易理解  (1)get()方法直接返回实体类,如果查不到数据则返回null.load()会返回一个实体代理对象(当前这个对象可以自动转化为实体对象),但当代理对象被调用 ...

  9. c#创建文件( File.Create() )后对文件写操作出错的分析

    在C#中,使用system.IO.File.Create()创建完一个文件之后,如果需要对这个文件进行写操作,会出现错误,提示你“这个文件正在被使用”. 原因是System.IO.File.Creat ...

  10. Python中可视化图表处理echarts库的安装

    系统环境:Windows 7 企业版 进入cmd 输入:python –m pip install pyecharts