CF 329B(Biridian Forest-贪心-非二分)
2 seconds
256 megabytes
standard input
standard output
You're a mikemon breeder currently in the middle of your journey to become a mikemon master. Your current obstacle is go through the infamous Biridian Forest.
The forest
The Biridian Forest is a two-dimensional grid consisting of r rows and c columns. Each cell in Biridian Forest may contain a tree, or may be vacant. A vacant cell may be occupied by zero or more mikemon breeders (there may also be breeders other than you in the forest). Mikemon breeders (including you) cannot enter cells with trees. One of the cells is designated as the exit cell.
The initial grid, including your initial position, the exit cell, and the initial positions of all other breeders, will be given to you. Here's an example of such grid (from the first example):
Moves
Breeders (including you) may move in the forest. In a single move, breeders may perform one of the following actions:
- Do nothing.
- Move from the current cell to one of the four adjacent cells (two cells are adjacent if they share a side). Note that breeders cannot enter cells with trees.
- If you are located on the exit cell, you may leave the forest. Only you can perform this move — all other mikemon breeders will never leave the forest by using this type of movement.
After each time you make a single move, each of the other breeders simultaneously make a single move (the choice of which move to make may be different for each of the breeders).
Mikemon battle
If you and t (t > 0) mikemon breeders are located on the same cell, exactly t mikemon battles will ensue that time (since you will be battling each of those t breeders once). After the battle, all of those t breeders will leave the forest to heal their respective mikemons.
Note that the moment you leave the forest, no more mikemon battles can ensue, even if another mikemon breeder move to the exit cell immediately after that. Also note that a battle only happens between you and another breeders — there will be no battle between two other breeders (there may be multiple breeders coexisting in a single cell).
Your goal
You would like to leave the forest. In order to do so, you have to make a sequence of moves, ending with a move of the final type. Before you make any move, however, you post this sequence on your personal virtual idol Blog. Then, you will follow this sequence of moves faithfully.
Goal of other breeders
Because you post the sequence in your Blog, the other breeders will all know your exact sequence of moves even before you make your first move. All of them will move in such way that will guarantee a mikemon battle with you, if possible. The breeders that couldn't battle you will do nothing.
Your task
Print the minimum number of mikemon battles that you must participate in, assuming that you pick the sequence of moves that minimize this number. Note that you are not required to minimize the number of moves you make.
The first line consists of two integers: r and c (1 ≤ r, c ≤ 1000), denoting the number of rows and the number of columns in Biridian Forest. The next r rows will each depict a row of the map, where each character represents the content of a single cell:
- 'T': A cell occupied by a tree.
- 'S': An empty cell, and your starting position. There will be exactly one occurence of this in the map.
- 'E': An empty cell, and where the exit is located. There will be exactly one occurence of this in the map.
- A digit (0-9): A cell represented by a digit X means that the cell is empty and is occupied by X breeders (in particular, if X is zero, it means that the cell is not occupied by any breeder).
It is guaranteed that it will be possible for you to go from your starting position to the exit cell through a sequence of moves.
A single line denoted the minimum possible number of mikemon battles that you have to participate in if you pick a strategy that minimize this number.
5 7
000E0T3
T0TT0T0
010T0T0
2T0T0T0
0T0S000
3
1 4
SE23
2
The following picture illustrates the first example. The blue line denotes a possible sequence of moves that you should post in your blog:
The three breeders on the left side of the map will be able to battle you — the lone breeder can simply stay in his place until you come while the other two breeders can move to where the lone breeder is and stay there until you come. The three breeders on the right does not have a way to battle you, so they will stay in their place.
For the second example, you should post this sequence in your Blog:
Here's what happens. First, you move one cell to the right.
Then, the two breeders directly to the right of the exit will simultaneously move to the left. The other three breeder cannot battle you so they will do nothing.
You end up in the same cell with 2 breeders, so 2 mikemon battles are conducted. After those battles, all of your opponents leave the forest.
Finally, you make another move by leaving the forest.
一句话题解:所有人到终点等它即可。。。
完全没想到是有多弱?。。。。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,m,tx,ty,sx,sy;
char c[MAXN][MAXN];
bool b[MAXN][MAXN]={0};
int qx[MAXN*MAXN],qy[MAXN*MAXN],head=1,tail=1,d[MAXN][MAXN];
void bfs()
{
qx[1]=tx,qy[1]=ty;b[tx][ty]=1;
memset(d,127,sizeof(d));d[tx][ty]=0;
while (head<=tail)
{
int x=qx[head],y=qy[head];
if (1<x&&!b[x-1][y]) b[x-1][y]=1,d[x-1][y]=d[x][y]+1,qx[++tail]=x-1,qy[tail]=y;
if (x<n&&!b[x+1][y]) b[x+1][y]=1,d[x+1][y]=d[x][y]+1,qx[++tail]=x+1,qy[tail]=y;
if (1<y&&!b[x][y-1]) b[x][y-1]=1,d[x][y-1]=d[x][y]+1,qx[++tail]=x,qy[tail]=y-1;
if (y<m&&!b[x][y+1]) b[x][y+1]=1,d[x][y+1]=d[x][y]+1,qx[++tail]=x,qy[tail]=y+1;
head++;
} }
int main()
{
// freopen("Biridian Forest.in","r",stdin);
scanf("%d%d",&n,&m);
For(i,n) scanf("%s",c[i]+1);
For(i,n) For(j,m)
if (c[i][j]=='S') sx=i,sy=j;
else if (c[i][j]=='E') tx=i,ty=j;
else if (c[i][j]=='T') b[i][j]=1;
bfs();
/*
For(i,n)
{
For(j,m) cout<<d[i][j]<<' ';cout<<endl;
}
*/
int ans=0;
For(i,n) For(j,m)
if (d[i][j]<=d[sx][sy]&&isdigit(c[i][j])) ans+=c[i][j]-48;
cout<<ans<<endl; return 0;
}
CF 329B(Biridian Forest-贪心-非二分)的更多相关文章
- Codeforces Round #192 (Div. 1) B. Biridian Forest 暴力bfs
B. Biridian Forest Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/329/pr ...
- [Codeforces Round #192 (Div. 2)] D. Biridian Forest
D. Biridian Forest time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 1118 Birds in Forest (25 分)
1118 Birds in Forest (25 分) Some scientists took pictures of thousands of birds in a forest. Assume ...
- 【Codeforces 329B】Biridian Forest
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 找到出口到每个点的最短距离. 设你到出口的最短距离为temp 那么如果某个人到终点的距离<=temp,则他们肯定能遇到你 因为他们可以在 ...
- CF 161B Discounts(贪心)
题目链接: 传送门 Discounts time limit per test:3 second memory limit per test:256 megabytes Description ...
- CF 115B Lawnmower(贪心)
题目链接: 传送门 Lawnmower time limit per test:2 second memory limit per test:256 megabytes Description ...
- CF Soldier and Badges (贪心)
Soldier and Badges time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- CF Anya and Ghosts (贪心)
Anya and Ghosts time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- PAT A1118 Birds in Forest (25 分)——并查集
Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in ...
随机推荐
- 使用ApiPost测试接口时需要先登录怎么办?利用Cookie模拟登陆!
ApiPost简介: ApiPost是一个支持团队协作,并可直接生成文档的API调试.管理工具.它支持模拟POST.GET.PUT等常见请求,是后台接口开发者或前端.接口测试人员不可多得的工具 . 下 ...
- VScode 光标乱跳
JS-CS_html formatter 卸载这个插件 如果没有,或者卸载跟这个类似的,如果还是没有就忽略这个 如果设置过自动保存 在配置上修改为 "files.autoSaveDelay& ...
- Go语言笔记:struct结构遍历
package main import ( "fmt" "reflect" ) type User struct { Id int Name string // ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- UVALive 7146 (贪心+少许数据结构基础)2014acm/icpc区域赛上海站
这是2014年上海区域赛的一道水题.请原谅我现在才发出来,因为我是在太懒了.当然,主要原因是我刚刚做出来. 其实去年我就已经看到这道题了,因为我参加的就是那一场.但是当时我们爆零,伤心的我就再也没有看 ...
- BZOJ4280 : [ONTAK2015]Stumilowy sad
线段树每个区间维护上下界以及要整体增加的标记即可,时间复杂度$O(m\log n)$. #include<cstdio> #define inf 1500000000 int n,m,op ...
- BZOJ2468 : [中山市选2010]三核苷酸
令d[i]为第i个样本数据,cnt为样本个数,经过化简可得 \[ans=\frac{\sum(d[i]^2)}{cnt}-(\frac{\sum d[i]}{cnt})^2\] 枚举每一种可能的三核苷 ...
- Nancyfx框架在传统Webform项目中的应用
最近有个老项目需要做一个需求更迭,老项目是基于传统的webform项目的 为了更好的前后台交互,决定引入Nancyfx框架 关于Nancyfx框架框架是啥就不多介绍了 总的来说是一款轻量级的web框架 ...
- 喵哈哈村的魔法考试 Round #7 (Div.2) 题解
喵哈哈村的魔法考试 Round #7 (Div.2) 注意!后四道题来自于周日的hihocoder offer收割赛第九场. 我建了个群:欢迎加入qscoj交流群,群号码:540667432 大概作为 ...
- hdu 5826 physics 物理题
physics 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5826 Description There are n balls on a smoo ...