【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)
【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)
题面
题解
直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n\)列的,每个数和前面\(n\)个数的最大值,最小值同理,就做完了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a,b,n,ans=2e9;
int g[MAX][MAX];
int s[2][MAX][MAX];
int mx[MAX][MAX];
int Q[MAX],h,t;
void get(int p)
{
for(int i=1;i<=a;++i)
{
h=1;t=0;
for(int j=1;j<=b;++j)
{
while(h<=t&&j-Q[h]>=n)++h;
while(h<=t&&g[i][Q[t]]<g[i][j])--t;
Q[++t]=j;mx[i][j]=g[i][Q[h]];
}
}
for(int j=n;j<=b;++j)
{
h=1;t=0;
for(int i=1;i<=a;++i)
{
while(h<=t&&i-Q[h]>=n)++h;
while(h<=t&&mx[Q[t]][j]<mx[i][j])--t;
Q[++t]=i;s[p][i][j]=mx[Q[h]][j];
}
}
}
int main()
{
a=read();b=read();n=read();
for(int i=1;i<=a;++i)
for(int j=1;j<=b;++j)
g[i][j]=read();
get(0);
for(int i=1;i<=a;++i)
for(int j=1;j<=b;++j)
g[i][j]=-g[i][j];
get(1);
for(int i=n;i<=a;++i)
for(int j=n;j<=b;++j)
ans=min(ans,s[0][i][j]+s[1][i][j]);
printf("%d\n",ans);
return 0;
}
【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)的更多相关文章
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- bzoj1047/luogu2216 理想的正方形 (单调队列)
开b组单调队列,分别维护此时某一列中的最大/最小值 然后我每次把它们的头取出来,塞到维护行的单调队列里,就是n*n的最大/最小值 #include<bits/stdc++.h> #defi ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- [HAOI2007]理想的正方形 单调队列 暴力
Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; #d ...
随机推荐
- 图文列表,关于Simpleadapter
main.xml: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xm ...
- opengl学习记录1——矩形绘制
#include <windows.h> #include <gl/GL.h> #include <gl/GLU.h> #include <glut.h> ...
- jersey2 整合 spring + hibernate + log4j2
整合 spring jersey2 官方还未正式支持 spring4, 但网上有好多支持方案,折腾了一圈后,还是用了 spring3; pom 添加以下依赖配置 <!-- Spring --&g ...
- Mysql的基本操作(一)增、删、改
创建/增加(create创建,alter字段操作,insert插入) 创建数据库 create database 数据库名称 charset=utf8; # 例: create database te ...
- Scrapy的日志等级和请求传参
日志等级 日志信息: 使用命令:scrapy crawl 爬虫文件 运行程序时,在终端输出的就是日志信息: 日志信息的种类: ERROR:一般错误: WARNING:警告: INFO:一般的信息: ...
- 《Macro-Micro Adversarial Network for Human Parsing》论文阅读笔记
<Macro-Micro Adversarial Network for Human Parsing> 摘要:在人体语义分割中,像素级别的分类损失在其低级局部不一致性和高级语义不一致性方面 ...
- @JsonFormat时间格式化注解使用
@JsonFormat注解是一个时间格式化注解,比如我们存储在mysql中的数据是date类型的,当我们读取出来封装在实体类中的时候,就会变成英文时间格式,而不是yyyy-MM-dd HH:mm:ss ...
- 第三次作业--导入excel表格(完整版)
031302322 031302316 将教师排课表导入系统 使用powerdesigner设计数据库表格 设计概念模型 打开new -> Conceptual Data Model创建概念模型 ...
- ElasticSearch 2 (36) - 信息聚合系列之显著项
ElasticSearch 2 (36) - 信息聚合系列之显著项 摘要 significant_terms(SigTerms)聚合与其他聚合都不相同.目前为止我们看到的所有聚合在本质上都是简单的数学 ...
- Visual Studio(VS)C++单元测试
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Visual Studio(VS)C++单元测试 本文地址:http://techie ...