【BZOJ1797】[AHOI2009]最小割(网络流)

题面

BZOJ

洛谷

题解

最小割的判定问题,这里就当做记结论吧。(源自\(lun\)的课件)

我们先跑一遍最小割,求出残量网络。然后把所有还有流量的边拿出来跑\(Tarjan\)缩\(SCC\)。

  • 如果一条满流边的两个端点不在同一个\(SCC\)中则这条边可能存在于最小割中。

    证明:考虑如果减少一条边的容量之后,最小割变小了,证明这条边可能存在于最小割之中。

    那么反过来,如果\((u,v)\)在同一个\(SCC\)中,我们把\(u\rightarrow v\)这条边的容量减小\(d\),那么我们把这个环上的所有边的容量都减少\(d\),仍然满足流量平衡,意味着最大流即最小割不变。反之最大流即最小割改变,那么这条边可能存在于最小割中。

  • 如果一条满流边\(u\rightarrow v\)的端点满足\(u\)和\(S\)在同一个\(SCC\),\(v\)和\(T\)在同一个\(SCC\),那么这条边必定在最小割中。

    证明:增加一条边的容量,如果最小割增加,意味着这条边必定在最小割中。因为\(u\rightarrow\)是满流的边,所以沿反边\(u\)可达\(S\),\(T\)可达\(v\) 。如果\(S,u\)在同一个\(SCC\),\(T,v\)在同一个\(SCC\)中,说明\(S\)到\(u\)上还有增广路,\(v\)到\(T\)上还有增广路,那么\(u\rightarrow v\)的流量增加最小割也会增加,此时\(u\rightarrow v\)必定在最小割中。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 5000
#define MAXL 60060
#define inf 1000000000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAXL<<1];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int n,m,S,T,level[MAX],cur[MAX];
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
queue<int> Q;Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v,d;
if(e[i].w&&level[v]==level[u]+1)
{
d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
if(!flow)break;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
memcpy(cur,h,sizeof(h));
ret+=dfs(S,inf);
}
return ret;
}
int dfn[MAX],low[MAX],G[MAX],gr,tim,St[MAX],top;
bool ins[MAX];
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=true;
for(int i=h[u];i;i=e[i].next)
{
if(!e[i].w)continue;
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++gr;int v;
do{v=St[top--];G[v]=gr;ins[v]=false;}while(u!=v);
}
}
int main()
{
n=read();m=read();S=read();T=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);
}
Dinic();
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=2;i<cnt;i+=2)
if(e[i].w)puts("0 0");
else
{
if(G[e[i].v]^G[e[i^1].v])printf("1 ");
else printf("0 ");
if(G[e[i].v]==G[T]&&G[e[i^1].v]==G[S])puts("1");
else puts("0");
}
return 0;
}

【BZOJ1797】[AHOI2009]最小割(网络流)的更多相关文章

  1. BZOJ1797:[AHOI2009]最小割(最小割)

    Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...

  2. [BZOJ1797][AHOI2009]最小割Mincut

    bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...

  3. P4126 [AHOI2009]最小割(网络流+tarjan)

    P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...

  4. P4126 [AHOI2009]最小割

    题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...

  5. 洛谷P4126 [AHOI2009]最小割

    题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...

  6. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  7. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  8. AHOI2009最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1072  Solved: 446[Submit] ...

  9. 洛谷$P4126\ [AHOI2009]$最小割 图论

    正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...

随机推荐

  1. WPF编程,使用WindowChrome实现自定义窗口功能的一种方法。

    原文:WPF编程,使用WindowChrome实现自定义窗口功能的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/arti ...

  2. 洛咕 P4491 [HAOI2018]染色

    显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...

  3. Android与Libgdx入门实例

    本文讲解如何实现Android与Libgdx各自的Hello World过程. 1. Android版Hello World 点击Eclipse快捷方式,选择New Android Applicati ...

  4. libgdx学习记录12——圆角矩形CircleRect

    libgdx提供了ShapeRenderer这个工具,用它可以画点.画线.画圆.画矩形.画椭圆.画扇形,但是没有提供画圆角矩形的方法. 刚开始自己尝试分成8端,4端画直线,4端画扇形,发现多了半径几部 ...

  5. [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]

    题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...

  6. stl源码剖析 详细学习笔记 算法(2)

    //---------------------------15/03/29---------------------------- //****************************set相 ...

  7. python中列表的常用操作增删改查

    1. 列表的概念,列表是一种存储大量数据的存储模型. 2. 列表的特点,列表具有索引的概念,可以通过索引操作列表中的数据.列表中的数据可以进行添加.删除.修改.查询等操作. 3. 列表的基本语法 创建 ...

  8. LintCode——数字统计

    数字统计:计算数字k在0到n中的出现的次数,k可能是0~9的一个值 样例:例如n=12,k=1,在 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],我们发现1出现 ...

  9. Algorithms学习笔记-Chapter0序言

    0.开篇 <Algorithms>源自Berkeley和UCSD课程讲义,由   Sanjoy Dasgupta / Christos H. Papadimitriou / Umesh V ...

  10. golang基础--类型与变量

    基础知识--类型与变量 基本类型 布尔型:bool 长度: 1字节 取值范围: false, true 注意事项: 不可以使用数字代表,不像 python中可是使用 1和0表示 整型: int/uin ...