(动态规划)Max Sum Plus Plus--hdu--1024
http://acm.hdu.edu.cn/showproblem.php?pid=1024
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21363 Accepted Submission(s): 7144
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
w[i][j]: 前 j 个数分为 i 段, 第 j 个数必须选;1. 第 j 个数单独为1段;2. 第 j 个数与前面的数连一块。
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j]:前 j 个数分为 i 段, 第 j 个数可选可不选; 1.选第 j 个数;2.不选第 j 个数。
b[i][j] = max(b[i][j-1], w[i][k]);
/// w[j] 表示 j 个元素取 i 段, a[j] 必须取是的最大值
w[j] = max(dp[1-t][j-1], w[j-1]) + sum[j]-sum[j-1];
/// dp[t][j] 表示在a[j]可取可不取这两种情况下取得的最大值
dp[t][j] = max(dp[t][j-1], w[j]);
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 1000001
using namespace std; int sum[N], w[N], dp[][N]; ///sum[i] 里面存的是前 i 项和 int main()
{
int m, n; while(scanf("%d%d", &m, &n)!=EOF)
{
int i, j, x; sum[] = ;
for(i=; i<=n; i++)
{
scanf("%d", &x);
sum[i] = sum[i-] + x;
dp[][i] = ; ///从前 i 个元素中取 0 段, 最大值为 0
} /** 我们先假设a[i]中 存放该序列的第 i 个值,
w[i][j] 表示前 j 个数分为 i 段, 第 j 个数必须选这种情况下取得的最大值
b[i][j]表示在前 j 个数中取 i 段 这种情况写取得的最大值 w[i][j]: 前 j 个数分为 i 段, 第 j 个数必须选;1. 第 j 个数单独为1段;2. 第 j 个数与前面的数连一块。
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j]:前 j 个数分为 i 段, 第 j 个数可选可不选; 1.选第 j 个数;2.不选第 j 个数。
b[i][j] = max(b[i][j-1], w[i][j]); **/ int t=;
for(i=; i<=m; i++) /// i表示取 i 段
{
for(j=i; j<=n; j++) /// 如果dp[i][j](j<i)是没有意义的
{
if(i==j)
dp[t][j] = w[j] = sum[j];
else
{
/// w[j] 表示 j 个元素取 i 段, a[j] 必须取是的最大值
w[j] = max(dp[-t][j-], w[j-]) + sum[j]-sum[j-];
/// dp[t][j] 表示在a[j]可取可不取这两种情况下取得的最大值
dp[t][j] = max(dp[t][j-], w[j]);
}
}
t = -t; ///t在 0 和 1 直间交替变换 /** 为什么要交换呢??? 这是为了要节省空间
仔细观察递归式
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j] = max(b[i][j-1], w[i][j]);
我们发现,对于取 i 段, w[i][j] 只与 b[i-1][k-1] 和 w[i][k-1] 有关, 与之前的那一些项没有关系
因此我们的数组可以开小一点, 用更新来覆盖掉前面的值!!! **/
} printf("%d\n", dp[m%][n]);
}
return ;
}
(动态规划)Max Sum Plus Plus--hdu--1024的更多相关文章
- Max Sum Plus Plus HDU - 1024
Max Sum Plus Plus HDU - 1024 Now I think you have got an AC in Ignatius.L's "Max Sum" ...
- 最大m段子段和 Day9 - E - Max Sum Plus Plus HDU - 1024
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...
- Max Sum Plus Plus HDU - 1024 基础dp 二维变一维的过程,有点难想
/* dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j) dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必 ...
- C - Max Sum Plus Plus HDU - 1024
用二位数组dp[i][j]记录组数为i,前j个数字的最大子段和. 转移方程: dp[i][j],考虑第j个数,第j个数可以并到前面那一组,此时dp[i][j]=dp[i][j-1]+arr[j],第j ...
- HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1024 Max Sum Plus Plus (动态规划)
HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...
- HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]
Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
- hdu 1024 Max Sum Plus Plus (动态规划)
Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
随机推荐
- auth 认证模块
. auth认证模块: http://www.cnblogs.com/liwenzhou/p/9030211.html auth模块的知识点: . 创建超级用户 python manage.py cr ...
- 面向服务的架构(SOA)演变图片
公司项目演变 成熟的公司项目结构 对比 总线-服务的注册与发现
- mtcp的快速编译(连接)
mtcp的快速编译 http://mos.kaist.edu/guide/config/03_build_mtcp.html 介绍DPDK中使用mtcp的文档 https://dpdksummit.c ...
- 2018 How to register and install LAUNCH ICARSCAN software ?
2018 New Version ICARSCAN is available now! Here’s the instruction on how to install ICARSCAN softwa ...
- LibreOJ #2006. 「SCOI2015」小凸玩矩阵 二分答案+二分匹配
#2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- Linux下文件的三种时间标记(atime ctime mtime)
在windows下,一个文件有:创建时间.修改时间.访问时间. 在Linux下,一个文件有:状态改动时间.修改时间.访问时间. 1)查看文件(或文件夹)的三种时间标记 (stat 命令) Access ...
- 微信小程序swiper制作内容高度不定的tab选项卡
微信小程序利用swiper制作内容高度不定的tab选项卡,不使用absolute定位,不定高度,由内容自由撑开主要思路是获取内容区的高度来给swiper动态设置值 .wxml <view cla ...
- sqlserver 添加服务器链接 跨服务器访问数据库
转载地址1:https://www.cnblogs.com/wanshutao/p/4137994.html //创建服务器链接 转载地址2:https://www.cnblogs.com/xulel ...
- java20(判断是否为会员)
1.不确定数组是哪个类型是,将数据类型换成类名 2.记得将判断的参数传到方法中 3.用到类名的: 创建对象时 创建未知类型的数组时 4.创建的对象所用到的名字,体重,判断(boolean isvip ...
- kbmmw 5.01 发布
Important notes (changes that may break existing code) ============================================= ...