Description

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
 

Input

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。
 
 

Output

一行一个数,最多进行多少次配对

 

Sample Input

3
2 4 8
2 200 7
-1 -2 1

Sample Output

4
 

HINT

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

Source

鸣谢Menci上传

主要是要注意到质因数有几个(2^2算两个),这样个数为奇数只能与个数为偶数配对,个数为偶数只能和个数为奇数配对,然后就是一个二分图,随便建一建图跑最大费用流就好。

 program rrr(input,output);
const
inf=;
type
etype=record
t,c,next,rev:longint;
w:int64;
end;
var
e:array[..]of etype;
num,a,d,q,fre,frv:array[..]of longint;
s:array[..]of boolean;
p:array[..]of longint;
c,dis:array[..]of int64;
inq:array[..]of boolean;
n,m,i,j,x,b,cnt,h,t,ans:longint;
w,f:int64;
function min(a,b:int64):int64;
begin
if a<b then exit(a) else exit(b);
end;
procedure ins(x,y,c:longint;w:int64);
begin
inc(cnt);e[cnt].t:=y;e[cnt].c:=c;e[cnt].w:=w;e[cnt].next:=a[x];a[x]:=cnt;
end;
procedure add(x,y,c:longint;w:int64);
begin
ins(x,y,c,w);e[cnt].rev:=cnt+;ins(y,x,,-w);e[cnt].rev:=cnt-;
end;
procedure spfa;
begin
for i:= to n do dis[i]:=-inf;dis[]:=;
h:=;t:=;q[]:=;inq[]:=true;
while h<>t do
begin
inc(h);if h> then h:=;
i:=a[q[h]];
while i<> do
begin
if (e[i].c>) and (dis[q[h]]+e[i].w>dis[e[i].t]) then
begin
dis[e[i].t]:=dis[q[h]]+e[i].w;
fre[e[i].t]:=i;frv[e[i].t]:=q[h];
if not inq[e[i].t] then
begin
inc(t);if t> then t:=;
q[t]:=e[i].t;inq[e[i].t]:=true;
end;
end;
i:=e[i].next;
end;
inq[q[h]]:=false;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
fillchar(s,sizeof(s),true);s[]:=false;
for i:= to do if s[i] then
begin
j:=i+i;while j<= do begin s[j]:=false;j:=j+i; end;
end;
m:=;for i:= to do if s[i] then begin inc(m);p[m]:=i; end;
readln(n);
for i:= to n do read(num[i]);
for i:= to n do
begin
x:=num[i];j:=;d[i]:=;
while x> do begin while x mod p[j]= do begin inc(d[i]);x:=x div p[j]; end;inc(j);if j>m then break; end;
if x> then inc(d[i]);
end;
fillchar(a,sizeof(a),);cnt:=;
for i:= to n do begin read(b);if d[i] mod = then add(i,n+,b,) else add(,i,b,); end;
for i:= to n do read(c[i]);
for i:= to n do for j:=i+ to n do
if (abs(d[i]-d[j])=) and ((num[i] mod num[j]=) or (num[j] mod num[i]=)) then
begin
if d[i] mod = then add(j,i,,c[i]*c[j]) else add(i,j,,c[i]*c[j]);
end;
ans:=;inc(n);w:=;
while true do
begin
spfa;
if dis[n]=-inf then break;
i:=n;f:=;
while i<> do begin f:=min(f,e[fre[i]].c);i:=frv[i]; end;
if w+f*dis[n]< then begin ans:=ans+w div (-dis[n]);break; end
else begin ans:=ans+f;w:=w+f*dis[n]; end;
i:=n;while i<> do begin dec(e[fre[i]].c,f);inc(e[e[fre[i]].rev].c,f);i:=frv[i]; end;
end;
write(ans);
close(input);close(output);
end.

bzoj4514 [Sdoi2016]数字配对(网络流)的更多相关文章

  1. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  2. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  3. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  4. [bzoj4514][SDOI2016]数字配对——二分图

    题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...

  5. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  6. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  7. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  8. $loj\ 2031\ [SDOI2016]$数字配对 网络流

    正解:网络流 解题报告: 我永远喜欢$loj$! 显然先预处理哪些$a$之间可以连边,然后考虑建两排点,连流量为$c_{i}\cdot c_{j}$,然后$ST$连$inf$,跑个费用流? 然后现在碰 ...

  9. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

随机推荐

  1. 极客互联网电视不是噱头,用户体验成创维G7200核心竞争力

        IT产业的迅猛发展带动了智能设备的崛起与繁荣,除已经高度普及的智能手机之外.智能电视.智能可穿戴设备等一大批新兴产品更是让消费者充分感受到了智能科技为生活所带来的变化.以智能电视为例,除了乐视 ...

  2. 【小程序】&nbsp; 的识别

    给标签添加   decode="{{true}}" space="{{true}}"  属性 eg: <text decode="{{true} ...

  3. 【本地服务器】windows下nginx安装操作教程

    1.下载nginx 下载地址:    (可选择下载 Stable version 版本) 2.把安装放到C盘或其他盘的根目录,并解压文件压缩包,可以重命名解压的文件夹,方便找到路径 (注意不要直接双击 ...

  4. 20155328 《网络对抗》 实验九 Web安全

    20155328 <网络对抗> 实验九 Web安全 基础 实验过程记录 在实验开始之前先把webgoat的jar包放到home目录下.打开终端,用命令java -jar webgoat-c ...

  5. 20155330 《网络对抗》 Exp6 信息搜集与漏洞扫描

    20155330 <网络对抗> Exp6 信息搜集与漏洞扫描 基础问题回答 哪些组织负责DNS,IP的管理? 互联网名称与数字地址分配机构(The Internet Corporation ...

  6. 【php增删改查实例】第四节 -自己 DIY 一个数据库管理工具

    本节介绍如何自己DIY一个数据库管理工具,可以在页面输入sql 进行简单的增删改查操作. 首先,找到xampp的安装目录,打开htdocs: 新建一个php文件,名称为 mysqladmin.php ...

  7. 洛咕 P4474 王者之剑

    宝石只能在偶数秒取到,假设有一个宝石在奇数秒取到了,那么上一秒是偶数秒,在上一秒的时候这里的宝石就没了. 相邻的两个宝石不能同时取,很显然,先取一块,那么这是偶数秒,取完了这一块之后相邻的都没了. 只 ...

  8. Number.toString SyntaxError

    问题分析 问题 20.toString(); VM163:1 Uncaught SyntaxError: Invalid or unexpected token 分析 "."号的原 ...

  9. python编码你需要知道的编码风格

    此时你已经可以写一些更长更复杂的 Python 程序,是时候讨论一下 编码风格 了.大多数语言可以写(或者更明白的说, 格式化 )作几种不同的风格.有些比其它的更好读.让你的代码对别人更易读是个好想法 ...

  10. Neo4j 第四篇:使用C#更新和查询Neo4j

    本文使用的IDE是Visual Studio 2015 ,驱动程序是Neo4j官方的最新版本:Neo4j Driver 1.3.0 ,创建的类库工程(Project)要求安装 .NET Framewo ...