膜意义下最短路。

把最小的\(a\)抠出来,作为模数\(mod\),然后建点编号为\(0\)到\(mod-1\),对每个数\(a\)连边\((i,(a+i)\mod mod)\)点\(i\)的最短路就是凑出对\(mod\)取膜为\(i\)的最小数

然后随便统计一下

注意判掉0

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
int fir[500010],dis[10000010],nxt[10000010],w[10000010],id;
il vd link(int a,int b,int c){nxt[++id]=fir[a],fir[a]=id,dis[id]=b,w[id]=c;}
int a[500010];
ll dist[500010];bool vis[500010];
std::priority_queue<std::pair<ll,int> >que;
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
int n=gi();ll Bl,Br;scanf("%lld%lld",&Bl,&Br);
int mod=1e9;
for(int i=1;i<=n;++i){a[i]=gi();if(a[i])mod=std::min(mod,a[i]);}
for(int i=1;i<=n;++i)
for(int j=0;j<mod;++j)
link(j,(j+a[i])%mod,a[i]);
memset(dist,63,sizeof dist);
dist[0]=0;que.push(std::make_pair(0,0));
while(!que.empty()){
int x=que.top().second;vis[x]=1;
for(int i=fir[x];i;i=nxt[i])
if(dist[dis[i]]>dist[x]+w[i]){
dist[dis[i]]=dist[x]+w[i];
que.push(std::make_pair(-dist[dis[i]],dis[i]));
}
while(!que.empty()&&vis[que.top().second])que.pop();
}
ll ans=0;
--Bl;
for(int i=0;i<mod;++i)if(dist[i]!=dist[mod]&&dist[i]<=Bl)ans-=(Bl-i)/mod-(dist[i]-i-1)/mod;
for(int i=0;i<mod;++i)if(dist[i]!=dist[mod]&&dist[i]<=Br)ans+=(Br-i)/mod-(dist[i]-i-1)/mod;
printf("%lld\n",ans);
return 0;
}

P2371 [国家集训队]墨墨的等式的更多相关文章

  1. 洛谷P2371 [国家集训队]墨墨的等式

    P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1​x1​+a2​y2​+-+a ...

  2. 【洛谷】P2371 [国家集训队]墨墨的等式(屠版题)

    先讲讲曲折的思路吧...... 首先,应该是CRT之类的东西,乱搞 不行......打了打草稿,发现有解的情况是gcd(a1,a2.....an)|B,于是可以求gcd然后O(n)查询?但是B的范围直 ...

  3. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

  4. 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)

    题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...

  5. p2371&bzoj2118 墨墨的等式

    传送门(bzoj) 题目 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存 ...

  6. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  7. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  8. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  9. bzoj 2118: 墨墨的等式

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

随机推荐

  1. JS前端创建CSV或Excel文件并浏览器导出下载

    长期以来,在做文件下载功能的时候都是前端通过ajax把需要生成的文件的内容参数传递给后端,后端通过Java语言将文件生成在服务器,然后返回一个文件下载的连接地址url.前端通过location.hre ...

  2. oracle数据库occi接口写入中文乱码解决方法

    将初始化代码中 Environment::createEnvironment(Environment::DEFAULT); 改为 Environment::createEnvironment(“UTF ...

  3. Sqlserver数据库中的临时表详解

    临时表在Sqlserver数据库中,是非常重要的,下面就详细介绍SQL数据库中临时表的特点及其使用,仅供参考. 临时表与永久表相似,但临时表存储在tempdb中,当不再使用时会自动删除.临时表有两种类 ...

  4. 纯js实现页面返回顶部的动画

    啥也不说了,直接上代码 var scrollTop = document.body.scrollTop; document.body.style.marginTop = -scrollTop + 'p ...

  5. innodb_fast_shutdown的内幕

    Innodb_fast_shutdown告诉innodb在它关闭的时候该做什么工作.有三个值可以选择:1.  0表示在innodb关闭的时候,需要purge all, merge insert buf ...

  6. python虚拟环境 -- virtualenv , virtualenvwrapper

    virtualenv -- python虚拟沙盒 有人说:virtualenv.fabric 和 pip 是 pythoneer 的三大神器. 一.安装 pip install virtualenv ...

  7. opensuse编译安装Python3后缺少zlib

    目录 opensuse编译安装Python3后缺少zlib 前言 编译安装 python导入zlib 重新编译python并指定zlib opensuse编译安装Python3后缺少zlib 前言 由 ...

  8. PyQt5--QLineEdit

    # -*- coding:utf-8 -*- ''' Created on Sep 20, 2018 @author: SaShuangYiBing Comment: ''' import sys f ...

  9. [NOIP2016 DAY1 T2]天天爱跑步-[差分+线段树合并][解题报告]

    [NOIP2016 DAY1 T2]天天爱跑步 题面: B[NOIP2016 DAY1]天天爱跑步 时间限制 : - MS 空间限制 : 565536 KB 评测说明 : 2s Description ...

  10. 【2018暑假集训模拟一】Day1题解

    T1准确率 [题目描述] 你是一个骁勇善战.日刷百题的OIer. 今天你已经在你OJ 上提交了y 次,其中x次是正确的,这时,你的准确率是x/y.然而,你最喜欢一个在[0; 1] 中的有理数p/q(是 ...