蒙特卡罗方法 python 实现
蒙特卡罗(Monte Carlo)方法的精髓:用统计结果去计算频率,从而得到真实值的近似值。
一、求圆周率的近似值,采用 投点法
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
# 投点次数
n = 10000
# 圆的信息
r = 1.0 # 半径
a, b = (0., 0.) # 圆心
# 正方形区域边界
x_min, x_max = a-r, a+r
y_min, y_max = b-r, b+r
# 在正方形区域内随机投点
x = np.random.uniform(x_min, x_max, n) # 均匀分布
y = np.random.uniform(y_min, y_max, n)
# 计算 点到圆心的距离
d = np.sqrt((x-a)**2 + (y-b)**2)
# 统计 落在圆内的点的数目
res = sum(np.where(d < r, 1, 0))
# 计算 pi 的近似值(Monte Carlo方法的精髓:用统计值去近似真实值)
pi = 4 * res / n
print('pi: ', pi)
# 画个图看看
fig = plt.figure()
axes = fig.add_subplot(111)
axes.plot(x, y,'ro',markersize = 1)
plt.axis('equal') # 防止图像变形
circle = Circle(xy=(a,b), radius=r, alpha=0.5)
axes.add_patch(circle)
plt.show()
效果图
二、求定积分(definite integral)的近似值,采用 投点法
import numpy as np
import matplotlib.pyplot as plt
'''蒙特卡罗方法求函数 y=x^2 在[0,1]内的定积分(值)'''
def f(x):
return x**2
# 投点次数
n = 10000
# 矩形区域边界
x_min, x_max = 0.0, 1.0
y_min, y_max = 0.0, 1.0
# 在矩形区域内随机投点
x = np.random.uniform(x_min, x_max, n) # 均匀分布
y = np.random.uniform(y_min, y_max, n)
# 统计 落在函数 y=x^2图像下方的点的数目
res = sum(np.where(y < f(x), 1, 0))
# 计算 定积分的近似值(Monte Carlo方法的精髓:用统计值去近似真实值)
integral = res / n
print('integral: ', integral)
# 画个图看看
fig = plt.figure()
axes = fig.add_subplot(111)
axes.plot(x, y,'ro',markersize = 1)
plt.axis('equal') # 防止图像变形
axes.plot(np.linspace(x_min, x_max, 10), f(np.linspace(x_min, x_max, 10)), 'b-') # 函数图像
#plt.xlim(x_min, x_max)
plt.show()
效果图
蒙特卡罗方法 python 实现的更多相关文章
- 蒙特卡罗方法 python 实现2
如果不考虑作图,这里的两个例子可以改写成下面的样子: 求圆周率 import random ''' 蒙特卡罗模拟 投点法计算圆周率 ''' # 投点游戏 def play_game(): # 圆 r ...
- MCMC(一)蒙特卡罗方法
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链(待填坑) MCMC(三)M-H采样和Gibbs采样(待填坑) 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Ca ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
- 【RL系列】从蒙特卡罗方法步入真正的强化学习
蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益. ...
- 蒙特卡罗方法、蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)初探
1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板( ...
- python的str,unicode对象的encode和decode方法, Python中字符编码的总结和对比bytes和str
python_2.x_unicode_to_str.py a = u"中文字符"; a.encode("GBK"); #打印: '\xd6\xd0\xce\xc ...
- 白话马尔科夫链蒙特卡罗方法(MCMC)
前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起 ...
- Python入门习题5.蒙特卡罗方法计算圆周率
#CalPi.py from random import random from math import sqrt from time import clock DARTS = 10000000 hi ...
- 矩阵或多维数组两种常用实现方法 - python
在python中,实现多维数组或矩阵,有两种常用方法: 内置列表方法和numpy 科学计算包方法. 下面以创建10*10矩阵或多维数组为例,并初始化为0,程序如下: # Method 1: list ...
随机推荐
- LeetCode题解之Max Consecutive Ones
1.题目描述 2.问题分析 遍历一次数组,以每个1 为起点向后数,数到0 时比较当前1的个数和最大1 的个数,然后将遍历的起点放到当前0 的后面. 3.代码 int findMaxConsecutiv ...
- 使用 Azure 门户创建 Windows 虚拟机
可以通过 Azure 门户创建 Azure 虚拟机. 此方法提供一个基于浏览器的用户界面,用于创建和配置虚拟机和所有相关的资源. 本快速入门介绍了如何创建虚拟机并在 VM 上安装 webserver. ...
- Oracle EBS GL 总账日记账打开报错此职责无可用函数
系统管理员下,跑请求:
- python之绘制图形库turtle
关于绘制图形库turtle# 画布上,默认有一个坐标原点为画布中心的坐标轴(0,0),默认"standard"模式坐标原点上有一只面朝x轴正方向小乌龟 一:海龟箭头Turtle相关 ...
- NGUI Clip Animation (UI动画)
效果预览 视频:http://pan.baidu.com/s/1ntr3XSt 运行环境 Unity 4.5, NGUI3.5, iTween 场景搭建 创建一个UIPanel,UIPanel下再创建 ...
- python3.6和pip3安装
CenOS7 安装依赖环境 yum -y install openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gcc 编译 ...
- 乘风破浪:LeetCode真题_036_Valid Sudoku
乘风破浪:LeetCode真题_036_Valid Sudoku 一.前言 有的时候对于一些基础知识的掌握,对我们是至关重要的,比如ASCII重要字符的表示,比如一些基本类型的长度. 二.Valid ...
- Docker容器学习与分享04
Docker容器的基本操作(2) 基于docker分享03的centos容器,接着学习docker容器的基本操作. docker分享03中创建了一个centos镜像,如果想要查看容器的具体信息就要使用 ...
- [BZOJ 3167][HEOI 2013]SAO
[BZOJ 3167][HEOI 2013]SAO 题意 对一个长度为 \(n\) 的排列作出 \(n-1\) 种限制, 每种限制形如 "\(x\) 在 \(y\) 之前" 或 & ...
- csrf在web网站中有多重要
小弟是学python的,今天在上网时看到一个商城网站,正好昨天学到了CSRF跨站请求,就对这个商城网站进行了一波测试 可以看到网页布局做的还是很不错的,然后进入了注册页面看看 之后就开始测试了 正常请 ...