和线段树类似,每个结点也要打lazy标记

但是lazy标记和线段树不一样

具体区别在于可持久化后lazy-tag不用往下传递,而是固定在这个区间并不断累加,变成了这个区间固有的性质(有点像分块的标记了)

update就按照这么来

int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}

查询时由于lazytag固定在区间上。所以向下查询的时候要把上层的lazytag的影响都算上,即递归时传递一个上层区间的  影响值(例如add)

ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}

此外还有合并维护时,由于子区间没有收到父区间的影响,所以合并时还要算父区间的lazytag

void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}

最后是完整代码,其实本题版本回滚时还可以吧size往回滚,以此节省内存

/*
主席树区间更新
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 100005
ll n,m,a[maxn];
struct Node{int lc,rc;ll sum,add;}T[maxn*];
int size,rt[maxn];
void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}
int build(int l,int r){
int now=++size;
if(l==r){
T[now].lc=T[now].rc=;
T[now].sum=a[l];
return now;
}
int mid=l+r>>;
T[now].lc=build(l,mid);
T[now].rc=build(mid+,r);
pushup(l,r,now);
return now;
}
int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}
ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}
void init(){
size=;
memset(rt,,sizeof rt);
memset(T,,sizeof T);
}
int main(){
while(scanf("%lld%lld",&n,&m)==){
init();
for(int i=;i<=n;i++)scanf("%lld",&a[i]); int cur=,l,r,c;char op[];
rt[cur]=build(,n);
while(m--){
scanf("%s",op);
if(op[]=='C'){scanf("%d%d%d",&l,&r,&c);rt[++cur]=update(rt[cur-],l,r,c,,n);}
if(op[]=='Q'){scanf("%d%d",&l,&r);cout<<query(rt[cur],l,r,,,n)<<'\n';}
if(op[]=='H'){
scanf("%d%d%d",&l,&r,&c);
cout<<query(rt[c],l,r,,,n)<<'\n';
}
if(op[]=='B'){scanf("%d",&c);cur=c;}
}
// puts("");
}
}

可持久化线段树——区间更新hdu4348的更多相关文章

  1. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  2. HDU 1556 Color the ball(线段树区间更新)

    Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...

  3. hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新

    #1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  5. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

  6. HDU 1698 线段树 区间更新求和

    一开始这条链子全都是1 #include<stdio.h> #include<string.h> #include<algorithm> #include<m ...

  7. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

  8. ZOJ 1610 Count the Colors (线段树区间更新)

    题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...

  9. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

随机推荐

  1. Ubuntu16.04搭建OpenVPN

    Ubuntu16.04搭建OpenVPN 2018年12月27日 15:50:59 VinQin 阅读数:21042   简介 如果在一个非信任网络下比如旅社或者咖啡店的WiFi网络下,想要通过你的智 ...

  2. LOJ 6281 数列分块入门 5

    简化版题意 给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数. N<=50000 Solution 首先我们先思考: 一个有符 ...

  3. [SDOI2017]天才黑客

    题目大意 给一张有向图,再给一颗字典树,有向图上的每条边有一个非负边权还有一个字典树上的字符串,从一条边到另一条边的代价是那条边的边权和这两个字符串的最长公共前缀,问从1到其他点的最短路. 题解 一看 ...

  4. 自定义select标签箭头样式

    select::-ms-expand{ display: none; }//ie样式清除 select{ appearance:none; -moz-appearance:none; -webkit- ...

  5. “三次握手,四次挥手”你真的懂吗?TCP

    “三次握手,四次挥手”你真的懂吗?  mp.weixin.qq.com 来源:码农桃花源 解读:“拼多多”被薅的问题出在哪儿?损失将如何买单? 之前有推过一篇不错的干货<TCP之三次握手四次挥手 ...

  6. Spring MVC通过AOP切面编程 来拦截controller 实现日志的写入

    首选需要参考的是:[参考]http://www.cnblogs.com/guokai870510826/p/5977948.html    http://www.cnblogs.com/guokai8 ...

  7. SpringMVC配置与使用

    一.MVC概要 MVC是模型(Model).视图(View).控制器(Controller)的简写,是一种软件设计规范,用一种将业务逻辑.数据.显示分离的方法组织代码,MVC主要作用是降低了视图与业务 ...

  8. ubuntu安装nginx pagespeed

    一.自动安装 使用最新稳定版本的ngx_pagespeed自动安装依赖项并构建最新的主线版nginx,请运行: $ sudo bash <(curl -f -L -sS https://ngxp ...

  9. xml转换为json格式时,如何将指定节点转换成数组 Json.NET

    使用Json.NET转换xml成json时,如果xml只有单个节点,但json要求是数组形式[], JsonConvert.SerializeXmlNode 并不能自动识别 示例如下: RecordA ...

  10. 第十一节:WebApi的版本管理的几种方式

    一. 背景和方案 1. 多版本管理的概念 Android .IOS等 App 存在着多版本客户端共存的问题:App 最新版已经升级到了5.0 了,但是有的用户手机上还运行着 4.8.3.9 甚至2.2 ...