CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)
<题目链接>
题目大意:
给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值。
解题分析:
数据较大,$10^{12}$个点的完全图,然后异或又暂时推不出什么性质,所以先起手Kruskal打一张小数据完全图的MST的表,发现规律其实还是蛮好找的。
#include <bits/stdc++.h> using namespace std; const int N = 1e5+; int fa[N],cnt,ncase;
struct Edge{ int u,v,w;
bool operator < (const Edge &tmp)const{
return w<tmp.w;
}
}e[N];
map<int,int>mpa;
inline void add(int u,int v,int w){
e[++cnt]=(Edge){u,v,w};
}
inline int find(int &x){
while(x!=fa[x])
x=fa[x]=fa[fa[x]];
}
inline void Kruskal(){
sort(e+,e++cnt);
for(int i=;i<=cnt;i++){
int u=e[i].u,v=e[i].v;
find(u);find(v);
if(u!=v){
fa[v]=u;
printf("%dth edge , w=%d\n",++ncase,e[i].w);
mpa[e[i].w]++;
}
}
for(auto i:mpa){
printf("%d have %d (num)\n",i.first,i.second);
}
}
int main(){
int n;cin>>n;
ncase=;
for(int i=;i<n;i++)fa[i]=i;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
add(i,j,i^j);
}
}
Kruskal();
}
打表
然后根据规律就可以快速求解了。
#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main(){
ll n,ans,w=;
scanf("%lld",&n);
while(n>){
ans+=w*(n>>); //(n>>1)代表边数,w代表权值
w<<=;
n-=n>>;
}
cout<<ans<<endl;
}
CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)的更多相关文章
- Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))
题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...
- Codeforces 862C - Mahmoud and Ehab and the xor
862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...
- # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor
E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】
<题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...
- Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)
题目链接 \(Description\) 有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\).求其最小生成树边权之和. \(Sol ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)
题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...
- Coderfroces 862 C. Mahmoud and Ehab and the xor
C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...
- Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)
Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...
- Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)
Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...
随机推荐
- luogu4705玩游戏
题解 我们要对于每个t,求一个(1/mn)sigma(ax+by)^t. 把系数不用管,把其他部分二项式展开一下: simga(ax^r*by^(t-r)*C(t,r)). 把组合数拆开,就变成了一个 ...
- Mysql注入小tips --持续更新中
学习Web安全好几年了,接触最多的是Sql注入,一直最不熟悉的也是Sql注入.OWASP中,Sql注入危害绝对是Top1.花了一点时间研究了下Mysql类型的注入. 文章中的tips将会持续更新,先说 ...
- nginx服务器的基本配置
nginx作为反向代理搭建服务器的优点. 处理响应请求很快:单次请求会得到更快的响应.在高峰期,Nginx 可以比其它的 Web 服务器更快的响应请求 高并发连接:理论上,Nginx 支持的并发连接上 ...
- Linux基本命令总结(九)
接上篇: 46,scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下 ...
- CF24D Broken robot
题目链接 题意 有一个\(n \times m\)的矩阵.机器人从点\((x,y)\)开始等概率的往下,往右,往左走或者不动.如果再第一列,那么不会往左走,再第m列不会往右走.也就是说机器人不会走出这 ...
- gcc __thread关键字
https://blog.csdn.net/xj178926426/article/details/54345449 EventLoop.cpp __thread EventLoop* t_loopI ...
- python 爬虫之beautifulsoup(bs4)使用 --待完善
#!/usr/bin/env python # -*- coding:utf- -*- from bs4 import BeautifulSoup import requests url = 'htt ...
- centos中编译安装nginx+mysql +php(未完)
参考地址:http://www.cnblogs.com/htian/p/5728599.html 去官网找到PCRE,并下载http://www.pcre.org/wget ftp://ftp.csx ...
- 降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...
- mysql递归
sql Server可以用with as 语法,mysql没有这个功能,只能用别的方式了,目前的mysql版本中并不支持直接的递归查询,但是通过递归到迭代转化的思路,还是可以在一句SQL内实现树的递归 ...