LRU算法的Java实现
LRU全称是Least Recently Used,即最近最久未使用的意思。
LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
- 实现LRU:
1.用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。
2.利用一个链表来实现,每次新插入数据的时候将新数据插到链表的头部;每次缓存命中(即数据被访问),则将数据移到链表头部;那么当链表满的时候,就将链表尾部的数据丢弃。
3.利用链表和hashmap。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。
- 比较三种方法优劣:
对于第一种方法,需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。对于第二种方法,链表在定位数据的时候时间复杂度为O(n)。所以在一般使用第三种方式来是实现LRU算法。
- 实现方案
使用LinkedHashMap实现
LinkedHashMap底层就是用的HashMap加双链表实现的,而且本身已经实现了按照访问顺序的存储。此外,LinkedHashMap中本身就实现了一个方法removeEldestEntry用于判断是否需要移除最不常读取的数,方法默认是直接返回false,不会移除元素,所以需要重写该方法。即当缓存满后就移除最不常用的数。
import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
}
@Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
}
public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
}
public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
}
public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}
LRU算法的Java实现的更多相关文章
- 近期最久未使用页面淘汰算法———LRU算法(java实现)
请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...
- 最近最久未使用页面淘汰算法———LRU算法(java实现)
请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次访问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 按照 ...
- 使用java.util.LinkedList模拟实现内存页面置换算法--LRU算法
一,LRU算法介绍 LRU是内存分配中“离散分配方式”之分页存储管理方式中用到的一个算法.每个进程都有自己的页表,进程只将自己的一部分页面加载到内存的物理块中,当进程在运行过程中,发现某页面不在物理内 ...
- Java实现LRU算法
一.LRU算法简介 LRU(Least Recently Used)最近最久未使用算法 常见应用场景:内存管理中的页面置换算法.缓存淘汰中的淘汰策略等 二.实现理论 底层结构:双向链表 + HashM ...
- LRU算法介绍和在JAVA的实现及源码分析
一.写随笔的原因:最近准备去朋友公司面试,他说让我看一下LRU算法,就此整理一下,方便以后的复习. 二.具体的内容: 1.简介: LRU是Least Recently Used的缩写,即最近最少使用. ...
- Android图片缓存之Lru算法
前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...
- 缓存淘汰算法--LRU算法
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...
- 借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...
- LRU缓存实现(Java)
LRU Cache的LinkedHashMap实现 LRU Cache的链表+HashMap实现 LinkedHashMap的FIFO实现 调用示例 LRU是Least Recently Used 的 ...
随机推荐
- G面经Prepare: Print Zigzag Matrix
For instance, give row = 4, col = 5, print matrix in zigzag order like: [1, 8, 9, 16, 17] [2, 7, 10, ...
- org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.shen.mapper.UserMapper.findById
org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.shen.mapper.Use ...
- archlinux中安装Oracle12c的过程中遇到的问题
INFO: : cannot find INFO: /usr/lib64/libpthread_nonshared.aINFO: INFO: genclntsh: Failed to link lib ...
- 如何执行shell命令
可使用 git 命令行来执行shell命令,如 D 盘下的一 shell 脚本 test.sh 如下: echo "Hello world" 打开命令行,输入命令执行: 转载请注明 ...
- sql server中的while循环语句
语法格式: while 条件 begin ....... end declare @num begin update SDetail end
- SQL实现如何计算项目进度总共天数情况、已经施工天数情况、以及施工进度百分比
SELECT DATEDIFF(DAY,e.StartDate,e.EndDate)as totaldays, (SELECT COUNT(TaskID) from ConstructionManag ...
- 关于linux系统CPU篇--->不容易发现的占用CPU较高进程
1.系统的CPU使用率,不仅包括进程用户态和内核态的运行,还包括中断处理,等待IO以及内核线程等等.所以,当你发现系统的CPU使用率很高的时候,不一定能找到相对应的高CPU使用率的进程 2.案例分析, ...
- SlidingMenu第一篇 --- 导入SlidingMenu库
1. 下载地址:https://github.com/jfeinstein10/SlidingMenu 2. 找到下载好的SlidingMeun的library目录 3. 导入库(将上述地址复制到 ...
- 使用 Nginx 内置 $http_user_agent 来区分( 电脑 pc、手机 mobile、平板 pad )端的内容访问
location / { #pc端内容访问 set $flag "pc"; set $num 1; set $hua "${http_user_agent}"; ...
- 【题解】Luogu P4867 Gty的二逼妹子序列
原题传送门 同Luogu P4396 [AHOI2013]作业 询问多了10倍,但还能跑过(smog #include <bits/stdc++.h> #define N 100005 # ...