http://image.uczzd.cn/10129986679866437816.jpg?id=0&from=export

https://www.cnblogs.com/ityouknow/p/7089177.html

<style type="text/css">

 #myMenuid {
border-top: 3px solid #108ead;
padding-top: 1px;
box-shadow: 0px 2px 10px 0px rgba(0,0,0,0.1), 0 1px rgba(0,0,0,0.1);
background: #fafafa;
padding-bottom:10px; } #myMenuid li {
border-radius: 0;
color: #0e90d2;
background: 0 0; } #myMenuid a{
display: inline-block;
padding: 0 6px;
height: 34px;
color: #757575;
font-weight: 500;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
border-radius: 4px;
font-size: 16px;
text-decoration: none;
} .el-menu--horizontal .el-menu-item {
cursor: default;
}
.el-menu-item.is-active {
color: #409EFF;
}
</style>

mn的更多相关文章

  1. 在DECIMAL(m,n)的设置中,整数的位数不能大于(m-n)

    关于DB2的DECIMAL类型 创建表的时用的是DECIMAL(13,2),我认为它为13个整数位数+2为有效数字,因为在打印银行交易的FORM时遇到了难题.输出和建表的长度不一样,我们以为它会打印出 ...

  2. 已知整数m,n,p,q适合(m-p)|(mn+pq)证明:(m-p)|(mq+np)(整除理论1.1.5)

    已知整数m,n,p,q适合(m-p)|(mn+pq)证明:(m-p)|(mq+np) 证明: 令(mn+pq)—(mq+np) =mn-np+pq-mq =n(m-p)+q(p-m) =(n-q)(m ...

  3. O(mn)实现LCIS

    序: LCIS即求两序列的最长公共不下降子序列.思路于LCS基本一致. 用dp[i][j]记录当前最大值. 代码实现: /* About: LCIS O(mn) Auther: kongse_qi D ...

  4. js随机数生成,生成m-n的随机数

    使用js生成n到m间的随机数字,主要目的是为后期的js生成验证码做准备,Math.random()函数返回0和1之间的伪随机数 var random = Math.random(); console. ...

  5. 已知m和n是两个整数,并且m^2+mn+n^2能被9整除,试证m,n都能被3整除。

    引证:m,n都是整数,m2=3n,求证m是3的倍数. 引证证明:(反证法)假设m并非3的倍数,那么m2则不含因数3,则m2≠3n,这与已知条件相反. 所以,当m2=3n时,m必是3的倍数. 有了引证, ...

  6. bzoj 2238 Mst —— 树剖+mn标记永久化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2238 看了半天... 首先,想要知道每条边删除之后的替代中最小的那个: 反过来看,每条不在 ...

  7. str = @"abc ""def"" ghi """"jkl"""" mn";

    namespace ConsoleQuotes { class Program { static void Main(string[] args) { string str = @"abc ...

  8. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  9. 【leetcode】Remove Duplicates from Sorted Array II

    Remove Duplicates from Sorted Array II Follow up for "Remove Duplicates":What if duplicate ...

  10. 【题解】【BST】【Leetcode】Validate Binary Search Tree

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

随机推荐

  1. 洛谷:P1182:数列分段`Section II`

    题目描述 对于给定的一个长度为N的正整数数列 A-iA−i ,现要将其分成 M(M≤N)M(M≤N) 段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列 4 2 4 5 1424 ...

  2. leetcode — largest-rectangle-in-histogram

    import java.util.Stack; /** * * Source : https://oj.leetcode.com/problems/largest-rectangle-in-histo ...

  3. sysbench的框架实现介绍

    sysbench是一个非常经典的综合性能测试工具,它支持CPU,IO,内存,尤其是数据库的性能测试.那它是怎么做到通用性的呢,总结一句话是大量运用了重载的方法. sysbench总体架构 sysben ...

  4. Mongodb副本集--Out of memory: Kill process 37325 (mongod)

    1.Mongodb副本集--Out of memory: Kill process 37325 (mongod) 场景描述: 恢复一个22TB数据的mongodb实例的时候. 将备用结点加入mongo ...

  5. 【Angular专题】——(2)【译】Angular中的ForwardRef

    原文地址:https://blog.thoughtram.io/angular/2015/09/03/forward-references-in-angular-2.html 作者:Christoph ...

  6. [C# 设计模式] Iterator - 迭代器模式:我与一份奥利奥早餐的故事

    Iterator - 迭代器模式 目录 前言 回顾 UML 类图 代码分析 抽象的 UML 类图 思考 前言 这是一包奥利奥(数组),里面藏了很多块奥利奥饼干(数组中的元素),我将它们放在一个碟子上慢 ...

  7. VisualStudio2017集成GitHub

    1 概述 通过使用VisualStudio2017来编写C语言版本的helloworld程序,然后上传至GitHub 2 VisualStudio2017安装GitHub插件 前提条件: 必须完成Vi ...

  8. JQuery实现数组移除指定元素

    公式: 数组.splice($.inArray(元素,数组),数量); 实例: var arr = ['a','b','c','d']; arr.splice($.inArray('c',arr),1 ...

  9. c#计算机视觉库openCVSharp

    作为研究计算机视觉的一员,大家肯定对Intel大名鼎鼎的openCV系列计算机视觉库耳熟能详,对于很多人来说openCV甚至已经成为其项目研究不可缺少的一部分.但是,由于项目兼容性的要求.openCV ...

  10. [PHP]MySQL的wait_timeout与pdo对象

    1.查看和设置mysql的wait_timeout的值 SHOW GLOBAL VARIABLES LIKE '%timeout%'; 设置wait_timeout的值 SET GLOBAL wait ...