一:梯度下降:

梯度下降本质上是对极小值的无限逼近。先求得梯度,再取其反方向,以定步长在此方向上走一步,下次计算则从此点开始,一步步接近极小值。需要注意的是步长的取值,如果过小,则需要多次迭代,耗费大量时间才能取得极小值;如果过大,则可能难以取得较为接近极小值的点,在极小值两边来回跳跃,无法接近极小值。

而步长的取值往往于梯度有关,如果梯度的值较大,则步长可以取大的值,如果梯度较小,则步长应取较小值。

优势:高效,优化途径多

劣势:需要一些超参数:regularization(正则化)参数以及number of iterations(迭代次数),对feature scalling(特征缩放)敏感。

 from sklearn.linear_model import SGDClassifier as SGD

 x=[[0,0],[1,1]]
y=[0,1]
clf = SGD(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)
clf.fit(x,y)
print(clf.predict([[2,2]]))
print(clf.coef_)
print(clf.intercept_)
print(clf.decision_function([[2,2]])

根据官方网站的代码,使用了SGDClassifier分类器,进行了尝试。

 # coding = UTF-8
from sklearn.linear_model import SGDClassifier as SGD
from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt
import numpy as np X,y = make_blobs(n_samples=50,centers=2,random_state=0,cluster_std=0.6)
clf = SGD(loss='hinge',alpha=0.01,max_iter=200,fit_intercept=True)
clf.fit(X,y)
print("预测1:",clf.predict([[1,10]]))
print("预测2:",clf.predict([[2,2]]))
print("回归系数:",clf.coef_)
print("偏差",clf.intercept_)
print("##################")
print(X.shape)
print(y.shape)

使用make_blobs创建数据测试。

注:

  • loss="hinge": (soft-margin) linear Support Vector Machine ((软-间隔)线性支持向量机),
  • loss="modified_huber": smoothed hinge loss (平滑的 hinge 损失),
  • loss="log": logistic regression (logistic 回归),
  • and all regression losses below(以及所有的回归损失)。

前两个 loss functions(损失函数)是懒惰的,如果一个例子违反了 margin constraint(边界约束),它们仅更新模型的参数, 这使得训练非常有效率,即使使用了 L2 penalty(惩罚)我们仍然可能得到稀疏的模型结果。

梯度下降需注意参数:

alpha:乘以正则化项的常数,默认0.0001。当被设置为‘optimal’时也被用于计算学习效率

fit_intercept:是否该截取截距,默认True。如果为‘False’则假定数据以及居中。

梯度下降常用方法:

fit(X,y,coef_init=None,intercept_init=None,sample_weight=None):拟合线性模型(训练)

X:{类似数组的稀疏矩阵},形式:(n_sanmples,n_features)。

y:类似数组,形式:(n_samples)。

sample_weight:数组样本,形式:(n_samples,),optional(可选),可以设定个别样本的权重,如果不设定,则默认相等。

predict(X):用于预测X样本中的标签(结果/分类)

X:{类似数组的稀疏矩阵},形式:[n_samples,n_features]。

score(X,y,samples_weight=None)::(与上方相同)用于返回测试数据和标签(结果)的平均精度。

二:逻辑回归(逻辑斯特增长模型):

逻辑回归实际为一种分类的线性模型。如图,值域为0~1。如果需要解决非线性问题,与支持向量机SVM的思路相同,即将特征映射到高维来解决问题。因此,也可用梯度下降来求解。

 import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression as Log data=[ [-0.017612,14.053064,0],
[-1.395634,4.662541,1],
[-0.752157,6.538620,0],
[-1.322371,7.152853,0],
[0.423363,11.054677,0],
[0.406704,7.067335,1],
[0.667394,12.741452,0],
[-2.460150,6.866805,1],
[0.569411,9.548755,0],
[-0.026632,10.427743,0],
[0.850433,6.920334,1],
[1.347183,13.175500,0],
[1.176813,3.167020,1],
[-1.781871,9.097953,0],
[-0.566606,5.749003,1],
[0.931635,1.589505,1],
[-0.024205,6.151823,1],
[-0.036453,2.690988,1],
[-0.196949,0.444165,1],
[1.014459,5.754399,1] ] dataMat = np.mat(data)
y=dataMat[:,2]
b=np.ones(y.shape)
x=np.column_stack((b,dataMat[:,0:2]))
x=np.mat(x) model = Log()
model.fit(x,y)
print(model) predicted = model.predict(x)
answer = model.predict_proba(x)
print (predicted)
print(answer)

LogisticRegression中有这些参数需要注意:

penalty:'l1','l2'使用l1正则化,还是l2,默认l2

tol:精度为多少时可以停止计算,默认1e-4(十的负四次方)

C:C越大,正则化因子所占比例越小,C越小,正则化因子所占比例越大,默认1.0

solver:使用什么方法,默认liblinear(线性算法)。newton-cg,lbfgs,liblinear(对小数据集表现较好,大数据集建议使用sag及saga),sag(随即平均梯度下降算法Stochastic Average Gradient desqent solver),saga。

max_iter:最大迭代次数,默认100。

LogisticRegression常用方法:

fit(X,y,sample_weight=None):用于拟合模型(训练)

X:{类似数组的稀疏矩阵},形式:(n_samples,n_features)。

y:类似数组,形式:(n_samples)。

sample_weight:数组样本,形式:(n_samples,),optional(可选),可以设定个别样本的权重,如果不设定,则默认相等。

predict(X):用于预测X样本的标签(结果/分类)

X:同上。

返回C:数组,形式:[n_samples]

predict_proba(X):用于预测为对应标签的概率

X:同上。

返回一个n行k列的数组,n对应样本数量,k为可能的标签(结果/分类),每一行的结果之和应为1

sklearn使用——梯度下降及逻辑回归的更多相关文章

  1. 机器学习算法整理(二)梯度下降求解逻辑回归 python实现

    逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...

  2. [Python]数据挖掘(1)、梯度下降求解逻辑回归——考核成绩分类

    ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模 ...

  3. 02-12 Logistic(逻辑)回归

    目录 逻辑回归 一.逻辑回归学习目标 二.逻辑回归引入 三.逻辑回归详解 3.1 线性回归与逻辑回归 3.2 二元逻辑回归的假设函数 3.2.1 让步比 3.2.2 Sigmoid函数图像 3.3 二 ...

  4. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  5. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  6. 逻辑回归(logic regression)的分类梯度下降

    首先明白一个概念,什么是逻辑回归:所谓回归就是拟合,说明x是连续的:逻辑呢?就是True和False,也就是二分类:逻辑回归即使就是指对于二分类数据的拟合(划分). 那么什么是模型呢?模型其实就是函数 ...

  7. [Deep Learning] 神经网络编程基础 (Basics of Neural Network Programming) - 逻辑回归-梯度下降-计算图

    在神经网络中,假如有m个训练集,我们想把他们加入训练,第一个想到得就是用一个for循环来遍历训练集,从而开始训练.但是在神经网络中,我们换一个计算方法,这就是 前向传播和反向传播. 对于逻辑回归,就是 ...

  8. Sklearn实现逻辑回归

    方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...

  9. sklearn逻辑回归(Logistic Regression)类库总结

    class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_inter ...

随机推荐

  1. 浅谈Java内存模型

    Java内存模型虽说是一个老生常谈的问题 ,也是大厂面试中绕不过的,甚至初级面试也会问到.但是真正要理解起来,还是相当困难,主要这个东西看不见,摸不着.网上已经有大量的博客,但是人家的终究是人家的,自 ...

  2. [Abp 源码分析]九、事件总线

    0.简介 事件总线就是订阅/发布模式的一种实现,本质上事件总线的存在是为了降低耦合而存在的. 从上图可以看到事件由发布者发布到事件总线处理器当中,然后经由事件总线处理器调用订阅者的处理方法,而发布者和 ...

  3. Python内置函数(10)——chr

    英文文档: chr(i) Return the string representing a character whose Unicode code point is the integer i. F ...

  4. 进程,线程,协程,异步IO知识点

    进程: qq 要以一个整体的形式暴露给操作系统管理,里面包含对各种资源的调用,内存的管理,网络接口的调用等...对各种资源管理的集合 就可以成为  进程 线程: 是操作系统最小的调度单位, 是一串指令 ...

  5. qt 标签 QTextBrowser QLabel

    使用标签控件时我首先想到的就是QLabel,QLabel支持自动换行,并可以解析富文本,是一个不错的选择,这也使的我并没有去深入了解其他的可以有 同样效果的控件,本篇文字我也主要是讲解标签的用法,可以 ...

  6. asp.net core 系列 13 日志

    一.概述 ASP.NET Core 支持适用于各种内置和第三方日志记录, 供程序的日志记录 API,本文介绍了如何将日志记录 API 与内置提供程序一起使用.对于第三方日志记录提供程序使用,文章最后有 ...

  7. 一个JavaWeb搭建的开源Blog系统,整合SSM框架

    搬砖有暇,捣鼓了一个简单的Blog系统(项目地址https://github.com/lenve/JavaEETest/tree/master/MyBlog),适合以下人群学习: 1.已经掌握了jsp ...

  8. 如何发起、防御和测试XSS攻击,我们用DVWA来学习(上)

    XSS 全称Cross Site Scripting 即‘跨站脚本攻击’. 从其中文释义我们能直观的知道,这是一种对网站的攻击方式. 其原理在于,使用一切可能手段,将可执行脚本(scripting)植 ...

  9. 撸一撸Spring Cloud Ribbon的原理-负载均衡策略

    在前两篇<撸一撸Spring Cloud Ribbon的原理>,<撸一撸Spring Cloud Ribbon的原理-负载均衡器>中,整理了Ribbon如何通过负载均衡拦截器植 ...

  10. spring学习(五) ———— 整合web项目(SSM)

    一.SSM框架整合 1.1.整合思路 从底层整合起,也就是先整合mybatis与spring,然后在编写springmvc. 1.2.开发需求 查询商品列表(从数据库中查询) 1.3.创建web工程 ...