keras图像风格迁移
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致。
- 1. 使用预训练的VGG19网络提取特征
- 2. 损失函数之一是“内容损失”(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致。
- 3. 损失函数之二是“风格损失”(style loss),代表合成图像的特征与风格图像的特征之间的Gram矩阵之间的差异,保证生成图像的风格和风格图像保持一致。
- 4. 损失函数之三是“差异损失”(variation loss),代表合成的图像局部特征之间的差异,保证生成的图像局部特征的一致性,整体看上去自然不突兀。
基于keras的代码实现:
# coding: utf-8
from __future__ import print_function
from keras.preprocessing.image import load_img, img_to_array
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse
from scipy.misc import imsave
from keras.applications import vgg19
from keras import backend as K
import os
from PIL import Image, ImageFont, ImageDraw, ImageOps, ImageEnhance, ImageFilter
# 输入参数
parser = argparse.ArgumentParser(description='基于Keras的图像风格迁移.') # 解析器
parser.add_argument('--style_reference_image_path', metavar='ref', type=str,default = './style.jpg',
help='目标风格图片的位置')
parser.add_argument('--base_image_path', metavar='ref', type=str,default = './base.jpg',
help='基准图片的位置')
parser.add_argument('--iter', type=int, default=25, required=False,
help='迭代次数')
parser.add_argument('--pictrue_size', type=int, default=500, required=False,
help='图片大小.')
# 获取参数
args = parser.parse_args()
base_image_path = args.base_image_path
style_reference_image_path = args.style_reference_image_path
iterations = args.iter
pictrue_size = args.pictrue_size
source_image = Image.open(base_image_path)
source_image= source_image.resize((pictrue_size, pictrue_size))
width, height = pictrue_size, pictrue_size
def save_img(fname, image, image_enhance=True): # 图像增强
image = Image.fromarray(image)
if image_enhance:
# 亮度增强
enh_bri = ImageEnhance.Brightness(image)
brightness = 1.2
image = enh_bri.enhance(brightness)
# 色度增强
enh_col = ImageEnhance.Color(image)
color = 1.2
image = enh_col.enhance(color)
# 锐度增强
enh_sha = ImageEnhance.Sharpness(image)
sharpness = 1.2
image = enh_sha.enhance(sharpness)
imsave(fname, image)
return
# util function to resize and format pictures into appropriate tensors
def preprocess_image(image):
"""
预处理图片,包括变形到(1,width, height)形状,数据归一到0-1之间
:param image: 输入一张图片
:return: 预处理好的图片
"""
image = image.resize((width, height))
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # (width, height)->(1,width, height)
image = vgg19.preprocess_input(image) # 0-255 -> 0-1.0
return image
def deprocess_image(x):
"""
将0-1之间的数据变成图片的形式返回
:param x: 数据在0-1之间的矩阵
:return: 图片,数据都在0-255之间
"""
x = x.reshape((width, height, 3))
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
# 'BGR'->'RGB'
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8') # 以防溢出255范围
return x
def gram_matrix(x): # Gram矩阵
assert K.ndim(x) == 3
if K.image_data_format() == 'channels_first':
features = K.batch_flatten(x)
else:
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram
# 风格损失,是风格图片与结果图片的Gram矩阵之差,并对所有元素求和
def style_loss(style, combination):
assert K.ndim(style) == 3
assert K.ndim(combination) == 3
S = gram_matrix(style)
C = gram_matrix(combination)
S_C = S-C
channels = 3
size = height * width
return K.sum(K.square(S_C)) / (4. * (channels ** 2) * (size ** 2))
#return K.sum(K.pow(S_C,4)) / (4. * (channels ** 2) * (size ** 2)) # 居然和平方没有什么不同
#return K.sum(K.pow(S_C,4)+K.pow(S_C,2)) / (4. * (channels ** 2) * (size ** 2)) # 也能用,花后面出现了叶子
def eval_loss_and_grads(x): # 输入x,输出对应于x的梯度和loss
if K.image_data_format() == 'channels_first':
x = x.reshape((1, 3, height, width))
else:
x = x.reshape((1, height, width, 3))
outs = f_outputs([x]) # 输入x,得到输出
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image
def content_loss(base, combination):
return K.sum(K.square(combination - base))
# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent
def total_variation_loss(x,img_nrows=width, img_ncols=height):
assert K.ndim(x) == 4
if K.image_data_format() == 'channels_first':
a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
else:
a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# Evaluator可以只需要进行一次计算就能得到所有的梯度和loss
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
# 得到需要处理的数据,处理为keras的变量(tensor),处理为一个(3, width, height, 3)的矩阵
# 分别是基准图片,风格图片,结果图片
base_image = K.variable(preprocess_image(source_image)) # 基准图像
style_reference_image = K.variable(preprocess_image(load_img(style_reference_image_path)))
if K.image_data_format() == 'channels_first':
combination_image = K.placeholder((1, 3, width, height))
else:
combination_image = K.placeholder((1, width, height, 3))
# 组合以上3张图片,作为一个keras输入向量
input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0) #组合
# 使用Keras提供的训练好的Vgg19网络,不带3个全连接层
model = vgg19.VGG19(input_tensor=input_tensor,weights='imagenet', include_top=False)
model.summary() # 打印出模型概况
'''
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, None, None, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, None, None, 64) 1792 A
_________________________________________________________________
block1_conv2 (Conv2D) (None, None, None, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, None, None, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, None, None, 128) 73856 B
_________________________________________________________________
block2_conv2 (Conv2D) (None, None, None, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, None, None, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, None, None, 256) 295168 C
_________________________________________________________________
block3_conv2 (Conv2D) (None, None, None, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, None, None, 256) 590080
_________________________________________________________________
block3_conv4 (Conv2D) (None, None, None, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, None, None, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, None, None, 512) 1180160 D
_________________________________________________________________
block4_conv2 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block4_conv4 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, None, None, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, None, None, 512) 2359808 E
_________________________________________________________________
block5_conv2 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block5_conv4 (Conv2D) (None, None, None, 512) 2359808 F
_________________________________________________________________
block5_pool (MaxPooling2D) (None, None, None, 512) 0
=================================================================
'''
# Vgg19网络中的不同的名字,储存起来以备使用
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
loss = K.variable(0.)
layer_features = outputs_dict['block5_conv2']
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
content_weight = 0.08
loss += content_weight * content_loss(base_image_features,
combination_features)
feature_layers = ['block1_conv1','block2_conv1','block3_conv1','block4_conv1','block5_conv1']
feature_layers_w = [0.1,0.1,0.4,0.3,0.1]
# feature_layers = ['block5_conv1']
# feature_layers_w = [1]
for i in range(len(feature_layers)):
# 每一层的权重以及数据
layer_name, w = feature_layers[i], feature_layers_w[i]
layer_features = outputs_dict[layer_name] # 该层的特征
style_reference_features = layer_features[1, :, :, :] # 参考图像在VGG网络中第i层的特征
combination_features = layer_features[2, :, :, :] # 结果图像在VGG网络中第i层的特征
loss += w * style_loss(style_reference_features, combination_features) # 目标风格图像的特征和结果图像特征之间的差异作为loss
loss += total_variation_loss(combination_image)
# 求得梯度,输入combination_image,对loss求梯度, 每轮迭代中combination_image会根据梯度方向做调整
grads = K.gradients(loss, combination_image)
outputs = [loss]
if isinstance(grads, (list, tuple)):
outputs += grads
else:
outputs.append(grads)
f_outputs = K.function([combination_image], outputs)
evaluator = Evaluator()
x = preprocess_image(source_image)
img = deprocess_image(x.copy())
fname = '原始图片.png'
save_img(fname, img)
# 开始迭代
for i in range(iterations):
start_time = time.time()
print('迭代', i,end=" ")
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20, epsilon=1e-7)
# 一个scipy的L-BFGS优化器
print('目前loss:', min_val,end=" ")
# 保存生成的图片
img = deprocess_image(x.copy())
fname = 'result_%d.png' % i
end_time = time.time()
print('耗时%.2f s' % (end_time - start_time))
if i%5 == 0 or i == iterations-1:
save_img(fname, img, image_enhance=True)
print('文件保存为', fname)
基准图像:
风格图像:
合成的艺术风格图像:
训练时候整体的loss是3个loss的和,每个loss都有一个系数,调整不同的系数,对应不同的效果。
“内容损失”(content loss)
以下图片分别对应内容损失系数为0.1、1、5、10的效果:
随着内容损失系数的增大,迭代优化会更加侧重于调整合成图像的内容,使得图像跟原始图像越来越接近。
“风格损失”(style loss)
风格损失是VGG网络5个CNN层的特征的融合,单纯增大风格损失系数对图像最终风格影响不大,以下是系数是1和100的对比:
系数相差100倍,但是图像风格并没有明显的改变。可能调整5个卷积特征不同的比例系数会有效果。
以下是单纯使用第1、2、3、4、5个卷积层特征的效果:
可见 5个卷积层特征里第3和第4个卷积层对图像的风格影响较大。
以下调整第3和第4个卷积层的系数,5个系数比为1:1:1:1:1和0.5:0.5:0.4:0.4:1
增大第3、4层比例之后,图像风格更加接近风格图像。
“差异损失”(variation loss)
图像差异损失衡量的是图像本身的局部特征之间的差异,系数越大,图像局部越接近,表现在图像上就是图像像素间过度自然,以下是系数是1、5、10的效果:
以上。
keras图像风格迁移的更多相关文章
- 图像风格迁移(Pytorch)
图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \fr ...
- Keras实现风格迁移
风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...
- 基于 Keras 实现图像风格转移
Style Transfer 这个方向火起来是从2015年Gatys发表的Paper A Neural Algorithm of Artistic Style(神经风格迁移) , 这里就简单提一下论 ...
- A Neural Algorithm of Artistic Style 图像风格转换 - keras简化版实现
前言 深度学习是最近比较热的词语.说到深度学习的应用,第一个想到的就是Prisma App的图像风格转换.既然感兴趣就直接开始干,读了论文,一知半解:看了别人的源码,才算大概了解的具体的实现,也惊叹别 ...
- Gram格拉姆矩阵在风格迁移中的应用
Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...
随机推荐
- Scratch安装使用教程
一.说明 一直听说scratch是一款麻省理工所开发的很好的少儿编程学习工具,一直不是很清楚所谓少儿编程是长什么样所以探究了一下. 二.安装 scratch当前到了3.0版本,3.0版本默认直接是we ...
- 服务器端网络编程之 IO 模型
引言 从 T 跳槽到 A 之后,我的编程语言也从 C++ 转为 了 Java.在 T 做的偏服务器端开发,而在 A 更偏向于业务开发.上周在 A 公司组内做了一个<服务器端高性能网络编程> ...
- 路由导航之第一个子模块(HomeModule)
git clone git@github.com:len007/my-angular2-app.git my-angular2-app 开始 一个URL = 一个页面 = 一个Component. 我 ...
- 索引优化原则及Oracle中索引总结
索引建立原则 确定针对该表的操作是大量的查询操作还是大量的增删改操作. 尝试建立索引来帮助特定的查询.检查自己的sql语句,为那些频繁在where子句中出现的字段建立索引. where语句中不得不对查 ...
- 《程序设计入门——C语言》翁恺老师 第五周编程练习记录
1 素数和(5分) 题目内容: 我们认为2是第一个素数,3是第二个素数,5是第三个素数,依次类推. 现在,给定两个整数n和m,0<n<=m<=200,你的程序要计算第n个素数到第m个 ...
- JS 跳出多重循环
今天学到了如何跳出多重循环
- 软件151 王楚博 struts
一.下载Struts 建立web项目,给项目添加外部引用包(project-properties-Java Build Path-Add External Jars...).添加的包有:commons ...
- [Oracle][DATAGUARD]关于REDO_TRANSPORT_USER参数
大家可能已经知道,在Oracle的DATAGUARD(这里指的是PHYSICAL STANDBY)环境中,Primary端会把生成的REDO传到Standby端,然后由Standby端的MRP进程应用 ...
- jsapi 调起微信支付的的踩坑
问题: 公众微信号调起微信支付的时候,有的时候调起支付成功,有的时候调起支付失败.利用抓包工具抓取数据显示授权和调用后台的微信预支付订单接口都成功并且都返回正确的数据.但是调起支付的时候传入的data ...
- python 全栈开发笔记 2
函数 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 函数式编程最重要的是增强代码的重用性和可读性 def xx() ...