对于这道题,首先每个人的位置并不影响结果 所以我们可以将相同颜色糖果的人放在一块处理

设 \(f_{i,j}\) 表示处理到第 \(i\) 种糖果至少有 \(j\) 人的糖果和原先的类型相同 枚举当前种类中不满足要求的个数 则有

\[f_{i,j}=\sum_{k=0}^{c_i} f_{i-1,j-k}*\binom{c_i}{k}* \dfrac{1}{(c_{i}-k)!}
\]

\[ans=\sum_{i=0}^n {(-1)^i*f_{n,i}*(n-i)!}
\]

\(c_i\) 表示第 \(i\) 种糖的个数,这里之所以要乘上 \((c_i-k)!\) 的逆元 是因为我们还不确定这些人究竟是否满足要求 先将它们的顺序除去 在最后统计时我们再给所有剩下的人分配一个糖果即可 结果当然要容斥一下啦~~

#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000009
#define ll long long
#define mk make_pair
#define pb push_back
#define fi fisrt
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=2e3+5;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
int n,ans,tot,f[N][N],col[N],bin[N],inv[N];
void init(){
bin[0]=bin[1]=inv[0]=inv[1]=1;
for(int i=2;i<=n;i++) bin[i]=(ll)bin[i-1]*i%mod,inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<=n;i++) inv[i]=(ll)inv[i-1]*inv[i]%mod;
}
int C(int n,int m){
return (ll)bin[n]*inv[n-m]%mod*inv[m]%mod;
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
n=read(),init(),f[0][0]=1;
for(int i=1;i<=n;i++) col[read()]++;
for(int i=1;i<=n;tot+=col[i++]) for(int k=0;k<=col[i];k++) {
int tmp=(ll)C(col[i],k)*inv[col[i]-k]%mod;
for(int j=0;j<=tot;j++)
f[i][j+k]=(f[i][j+k]+(ll)f[i-1][j]*tmp%mod)%mod; }
for(int i=0;i<=n;i++) ans=(ans+(ll)((i&1)?mod-1:1)*f[n][i]%mod*bin[n-i]%mod)%mod;
return !printf("%d\n",ans);
}

BZOJ4665: 小w的喜糖 DP的更多相关文章

  1. bzoj4665小w的喜糖 dp+容斥

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 120  Solved: 72[Submit][Status][Discuss] ...

  2. bzoj4665 小w的喜糖(dp+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 130[Submit][Status][Discuss ...

  3. [bzoj4665]小w的喜糖_二项式反演

    小w的喜糖 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665 数据范围:略. 题解: 二项式反演裸题. $f_{i,j}$表示,前$i$种钦 ...

  4. BZOJ4665 : 小w的喜糖

    考虑枚举哪些人一定不合法,那么方案数可以通过简单的排列组合算出. 于是设$f[i][j]$表示前$i$种糖果,一共有$j$个人一定不合法的方案数,但是这样并不能保证其他人一定合法,所以需要进行容斥. ...

  5. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  6. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  7. 小w的喜糖(candy)

    小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...

  8. BZOJ 4665: 小w的喜糖

    Sol DP+容斥. 这就是一个错排的扩展...可是想到容斥却仅限于种数的容斥,如果种数在一定范围内我就会做了QAQ. 但是容斥的是一定在原来位置的个数. 发现他与原来的位置无关,可以先把每个同种的糖 ...

  9. ●BZOJ 4665 小w的喜糖

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4665 题解: 容斥,dp令 v[i] 表示原来拥有i类糖果的人数. (一个套路,首先把每个糖 ...

随机推荐

  1. linux device drivers ch01

    ch01. 设备驱动程序简介 设备驱动程序的作用在于提供机制(需要提供什么功能),而不是提供策略(如何使用这些功能). 内核功能划分: 进程管理:进程创建.销毁.进程间通信.共享cpu调度器. 内存管 ...

  2. vegas 为盖斯

    vegas 为盖斯 S键 分割素材U键 分开视频和音频I键渲染开始O渲染结束 默认布局 为盖斯新建项目的参数 剪好后渲染 插入字幕

  3. Pandas系列(四)-文本数据处理

    内容目录 1. 为什么要用str属性 2. 替换和分割 3. 提取子串 3.1 提取第一个匹配的子串 3.2 匹配所有子串 3.3 测试是否包含子串 3.4 生成哑变量 3.5 方法摘要 一.为什么要 ...

  4. 【Java面试题】19 final,finally和finalize的区别

    总体区别 final       用于申明属性,方法和类,表示属性不可变,方法不可以被覆盖,类不可以被继承.finally     是异常处理语句结构中,表示总是执行的部分. finallize   ...

  5. matlab运行出现“变量似乎会随着迭代次数改变而变化,请预分配内存,以提高运行速度”问题

    这句话大致意思就是: b = 0;for i = 1:3    a(i) = b;end是说变量的长度是变化的,经常在循环里出现,比如上面这个例子,这样会影响计算速度,最好的办法是预先定义a的长度,比 ...

  6. SpringBoot项目@RestController使用 redirect 重定向无效

    Spring MVC项目中页面重定向一般使用return "redirect:/other/controller/";即可. 而Spring Boot当我们使用了@RestCont ...

  7. docker的安装与基本使用

    安装docker curl -s https://get.docker.com|sh 好慢....一个小时吧... 启动docker 先执行命令docker version来来一下: docker v ...

  8. Java编码中出现的乱码问题

    1 让eclipse新建的jsp页面直接默认的就是gb2312 打开Window->Preferences,打开General中的 Content Types,选中Text 这是改全部的TXT的 ...

  9. lsof/netstat命令的一个重要作用: 根据进程查端口, 根据端口查进程

    我们知道, 根据ps -aux | grep xxx就是很快实现进程名和进程号的互查, 所以我们只说进程号pid就行. 如下示例中, 进程pid常驻. 1.  根据进程pid查端口: lsof -i ...

  10. 近日测试发现所有Excel相关功能均会抛异常,查后发现与福昕阅读器不兼容

    报这种错: System.Runtime.InteropServices.COMException (0x80010105): 服务器出现意外情况. (异常来自 HRESULT:0x80010105 ...