Kruskal’s algorithm

always union the lightest link if two sets haven't been linked

 typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge; void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i<G.n;i++)
{
for (j=0;j<G.n;j++)
{
if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=G.edges[i][j];
k++;
}
}
}
heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列
for (i=0;i<G.n;i++) //初始化辅助数组
{
vset[i]=i;
}
k=1; //生成的边数,最后要刚好为总边数
j=0; //E中的下标
while (k<G.n)
{
sn1=vset[E[j].u];
sn2=vset[E[j].v]; //得到两顶点属于的集合编号
if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树
{
printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);
k++;
for (i=0;i<G.n;i++)
{
if (vset[i]==sn2)
{
vset[i]=sn1;
}
}
}
j++;
}
}

Prim’s algorithm

maintain a key of each vertex to represent the lightest  link which connected the vertex

initial all the key as maximum, begin from a vertex and update the adjoin vertex key.

#define MAX  100000
#define VNUM 10+1 //这里没有ID为0的点,so id号范围1~10 int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0}; //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM]; //标记某点是否加入Vnew
int adjecent[VNUM]={0}; //记录V中与Vnew最邻近的点 void prim(int start)
{
int sumweight=0;
int i,j,k=0; for(i=1;i<VNUM;i++) //顶点是从1开始
{
lowcost[i]=edge[start][i];
addvnew[i]=-1; //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外
} addvnew[start]=0; //将起始点start加入Vnew
adjecent[start]=start; for(i=1;i<VNUM-1;i++)
{
int min=MAX;
int v=-1;
for(j=1;j<VNUM;j++)
{
if(addvnew[j]!=-1&&lowcost[j]<min) //在Vnew之外寻找最短路径
{
min=lowcost[j];
v=j;
}
}
if(v!=-1)
{
printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
addvnew[v]=0; //将v加Vnew中 sumweight+=lowcost[v]; //计算路径长度之和
for(j=1;j<VNUM;j++)
{
if(addvnew[j]==-1&&edge[v][j]<lowcost[j])
{
lowcost[j]=edge[v][j]; //此时v点加入Vnew 需要更新lowcost
adjecent[j]=v;
}
}
}
}
printf("the minmum weight is %d",sumweight);
}

Minimum Spanning Trees的更多相关文章

  1. 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)

    Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...

  2. Gym102012A Rikka with Minimum Spanning Trees

    题意 \(T\) 组数据,每组数据给定一个 \(n\) 个点,\(m\) 条边,可能含有重边自环的图,求出最小生成树的个数与边权和的乘积,对 \(10^9+7\) 取模. \(\texttt{Data ...

  3. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  4. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  9. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. ftp定时任务-日志备份

    1. 安装 #yum -y install vsftpd 2. 修改配置文件 #vi /etc/vsftpd/vsftpd.conf FTP服务器的默认目录是/var/ftp,而且当用户以匿名方式登录 ...

  2. 自动生成CHANGELOG.md

    $ npm install -g conventional-changelog-cli $ cd my-project $ conventional-changelog -p angular -i C ...

  3. Vue-CLI3.0版本配置BootStrap的方法

    一.引入jquery bootstrap popper   用   cnpm install jquery bootstrap@3 popper.js --save  用cnpm 来导入 用npm会出 ...

  4. 【堆】【洛谷例题】p1090 p1334 p1177

    (都是比较简单的典型的而且都是小根堆的例题) p1090 合并果子[传送门] 算法分析:要尽量使用最小的体力合并完所有果子,那么每次合并的两堆果子应该是这所有堆中最小的一个(因为越先合并的堆要被算的次 ...

  5. java 形式参数和实际参数的区别

    1.形参不能离开方法.形参只有在方法内才会发生作用,也只有在方法中使用,不会在方法外可见.而实参可以再程序的任何地方都使用.

  6. SQL server 数据库的版本为661,无法打开,此服务器只支持655版及更低版本。不支持降级路径

    亲测有效. 解决方案:造成这个错误是因为把本地的SQL Server (MSSQLSERVER)服务给禁止了,而把 SQL Server (SQLEXPRESS)服务给启动了,因为这样子,本来应该在数 ...

  7. JSP动作标签flush属性值

    在JSP动作标签<jsp:include flush="true"/>,flush属性可以为true或false.flush默认值为false,当把flush属性赋值为 ...

  8. 《用Python写爬虫》学习笔记(一)

    注:纯文本内容,代码独立另写,属于本人学习总结,无任何商业用途,在此分享,如有错误,还望指教. 1.为什么需要爬虫? 答:目前网络API未完全放开,所以需要网络爬虫知识. 2.爬虫的合法性? 答:爬虫 ...

  9. JavaEE第六周

    Applet简介 Java Applet简介 最近要使用worldwind java sdk做Applet开发,看了些Applet的资料,为了防止忘记,记录如下: applet是通过<apple ...

  10. 如何用css实现一个三角形?

    昨天被人问到说如何用css实现一个三角形?em....  当时被问到了,汗颜,今天找了一些帖子看了一下,也算是记录一下吧 代码如下: 实现效果: