Kruskal’s algorithm

always union the lightest link if two sets haven't been linked

 typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge; void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i<G.n;i++)
{
for (j=0;j<G.n;j++)
{
if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=G.edges[i][j];
k++;
}
}
}
heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列
for (i=0;i<G.n;i++) //初始化辅助数组
{
vset[i]=i;
}
k=1; //生成的边数,最后要刚好为总边数
j=0; //E中的下标
while (k<G.n)
{
sn1=vset[E[j].u];
sn2=vset[E[j].v]; //得到两顶点属于的集合编号
if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树
{
printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);
k++;
for (i=0;i<G.n;i++)
{
if (vset[i]==sn2)
{
vset[i]=sn1;
}
}
}
j++;
}
}

Prim’s algorithm

maintain a key of each vertex to represent the lightest  link which connected the vertex

initial all the key as maximum, begin from a vertex and update the adjoin vertex key.

#define MAX  100000
#define VNUM 10+1 //这里没有ID为0的点,so id号范围1~10 int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0}; //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM]; //标记某点是否加入Vnew
int adjecent[VNUM]={0}; //记录V中与Vnew最邻近的点 void prim(int start)
{
int sumweight=0;
int i,j,k=0; for(i=1;i<VNUM;i++) //顶点是从1开始
{
lowcost[i]=edge[start][i];
addvnew[i]=-1; //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外
} addvnew[start]=0; //将起始点start加入Vnew
adjecent[start]=start; for(i=1;i<VNUM-1;i++)
{
int min=MAX;
int v=-1;
for(j=1;j<VNUM;j++)
{
if(addvnew[j]!=-1&&lowcost[j]<min) //在Vnew之外寻找最短路径
{
min=lowcost[j];
v=j;
}
}
if(v!=-1)
{
printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
addvnew[v]=0; //将v加Vnew中 sumweight+=lowcost[v]; //计算路径长度之和
for(j=1;j<VNUM;j++)
{
if(addvnew[j]==-1&&edge[v][j]<lowcost[j])
{
lowcost[j]=edge[v][j]; //此时v点加入Vnew 需要更新lowcost
adjecent[j]=v;
}
}
}
}
printf("the minmum weight is %d",sumweight);
}

Minimum Spanning Trees的更多相关文章

  1. 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)

    Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...

  2. Gym102012A Rikka with Minimum Spanning Trees

    题意 \(T\) 组数据,每组数据给定一个 \(n\) 个点,\(m\) 条边,可能含有重边自环的图,求出最小生成树的个数与边权和的乘积,对 \(10^9+7\) 取模. \(\texttt{Data ...

  3. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  4. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  9. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. 在chrome上隐藏video的option按钮

    隐藏方法: video::-webkit-media-controls{ overflow:hidden !important;}video::-webkit-media-controls-enclo ...

  2. python-css基础知识

    CSS 是指层叠样式表 (Cascading Style Sheets),样式定义如何显示html,用于对页面进行美化. css样式的存放位置有三种: 第一种,直接写在html标签里: <div ...

  3. springboot 使用Filter

    1. 创建 Filter 类,实现 Filter 接口 import javax.servlet.*; import javax.servlet.annotation.WebFilter; impor ...

  4. 自动化定位——通过XPath定位元素

    XPath是一种XML文档中定位元素的语言.该定位方式也是比较常用的定位方式 1通过属性定位元素 find_element_by_xpath("//标签名[@属性='属性值']") ...

  5. h5页面避免两个页面反复跳转死循环

    项目中经常会碰到在一个页面加判断之后跳转另一个页面,并且无法返回,来回跳转,死循环,遇到这种情况可以在跳转时使用location,replace,关闭之前页面,与location.href 两者的不同 ...

  6. Vue+Element+computed实现购物车

    本人写的小程序,功能还在完善中,欢迎扫一扫提出宝贵意见!           该购物车效果采用的是Element-ui库实现的. 采用了computed计算属性来实现逻辑操作. 功能分析: 全选/全不 ...

  7. 【nowcoder】 4th T1 动态点分治

    题目链接:https://www.nowcoder.com/acm/contest/175/A 题目名字吓死人 std: 我 太可啪了 一道简单的模拟题.虽然我把题意想错了. 按照题意模拟输出和继承. ...

  8. 让input不可编辑

    有时候,我们希望表单中的文本框是只读的,让用户不能修改其中的信息,如使<input type="text" name="input1" value=&qu ...

  9. sface

    单步检测方法分为两类:anchor-based如ssd.RetinaNet;2)Anchor-free 如DenseBox.UnitBox;anchor-based处理的尺度范围虽小,更精准:anch ...

  10. Linux SSH登录服务器报ECDSA host key "ip地址" for has changed and you have requested strict checking错误

    错误:ECDSA host key "ip地址" for  has changed and you have requested strict checking. 解决方案:在终端 ...