tensorflow结果可视化-【老鱼学tensorflow】
这次我们把上次的结果进行可视化显示,我们会把神经网络的优化过程以图像的方式展示出来,方便我们了解神经网络是如何进行优化的。
首先,我们把测试数据显示出来:
# 显示测试数据
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
这里为了能够更加灵活地控制显示的图形,因此增加了subplot,这样方便对其中画出的线进行删除。
plt.ion()开启了交互模式,这样不会使图形显示后一直处于等待状态。
在绘制每一次的拟合曲线中:
try:
ax.lines.remove(lines[0])
except Exception:
pass
lines = ax.plot(x_data, prediction_value, c='r')
plt.pause(0.1)
首先把之前的线进行删除,然后添加预测值的直线段,最后还在屏幕上暂停一下绘制。
这样图形显示为:
完成的代码为:
import tensorflow as tf
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
"""
添加层
:param inputs: 输入数据
:param in_size: 输入数据的列数
:param out_size: 输出数据的列数
:param activation_function: 激励函数
:return:
"""
# 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
# 偏置shape为1行out_size列
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
# 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
outputs = Wx_plus_b
else:
# 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
outputs = activation_function(Wx_plus_b)
return outputs
import numpy as np
# 创建一列(相当于只有一个属性值),300行的x值,这里np.newaxis用于新建出列数据,使其shape为(300, 1)
x_data = np.linspace(-1, 1, 300)[:,np.newaxis]
# 增加噪点,噪点的均值为0,标准差为0.05,形状跟x_data一样
noise = np.random.normal(0, 0.05, x_data.shape)
# 定义y的函数为二次曲线的函数,但同时增加了一些噪点数据
y_data = np.square(x_data) - 0.5 + noise
# 显示测试数据
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
# 定义输入值,这里定义输入值的目的是为了能够使程序比较灵活,可以在神经网络启动时接收不同的实际输入值,这里输入的结构为输入的行数不国定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# 定义一个隐藏层,输入为xs,输入size为1列,因为x_data就只有1个属性值,输出size我们假定输出的神经元有10个神经元的隐藏层,激励函数用relu
l1 = add_layer(xs, 1, 10, tf.nn.relu)
# 定义输出层,输入为l1,输入size为10列,也就是l1的列数,输出size为1,因为这里直接输出为类似y_data了,因此为1列,假定没有激励函数,也就是输出是啥就直接传递出去了。
predition = add_layer(l1, 10, 1, activation_function=None)
# 定义损失函数为差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - predition), axis=1))
# 进行逐步优化的梯度下降优化器,学习效率为0.1,以最小化损失函数的方式进行优化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 初始化所有定义的变量
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
# 学习1000次
for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
# 打印期间的误差值,看这个误差值是否在减少
if i % 50 == 0:
# print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
prediction_value = sess.run(predition, feed_dict={xs:x_data, ys:y_data})
try:
ax.lines.remove(lines[0])
except Exception:
pass
lines = ax.plot(x_data, prediction_value, c='r')
plt.pause(0.1)
在进行绘制图形时,也可以用如下的方式进行:
绘制原始数据的图形:
plt.scatter(x_data, y_data)
plt.ion()
plt.show()
在每个测试步骤中绘制的图形:
prediction_value = sess.run(predition, feed_dict={xs:x_data, ys:y_data})
try:
plt.axes().lines.remove(lines[0])
except Exception:
pass
lines = plt.plot(x_data, prediction_value, c='r')
plt.pause(0.1)
tensorflow结果可视化-【老鱼学tensorflow】的更多相关文章
- tensorflow分类-【老鱼学tensorflow】
前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是 ...
- tensorflow安装-【老鱼学tensorflow】
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...
- tensorflow例子-【老鱼学tensorflow】
本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律 ...
- tensorflow变量-【老鱼学tensorflow】
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...
- tensorflow激励函数-【老鱼学tensorflow】
当我们回到家,如果家里有异样,我们能够很快就会发现家中的异样,那是因为这些异常的摆设在我们的大脑中会产生较强的脑电波. 当我们听到某个单词,我们大脑中跟这个单词相关的神经元会异常兴奋,而同这个单词无关 ...
- tensorflow卷积神经网络-【老鱼学tensorflow】
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...
- tensorflow Tensorboard可视化-【老鱼学tensorflow】
tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...
- tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...
- tensorflow保存读取-【老鱼学tensorflow】
当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: im ...
随机推荐
- SQL 中左连接与右链接的区别
在微信公众号中看到的sql左连接与右链接的总结,这个图总结的很好,所以单独收藏下:
- Android学习第8天
进程的概念 a) 四大组件都运行在主线程中 b) 服务是没有界面的,可理解为没有界面的Activity c) 进程的优先级 i. ...
- MT【281】最大值函数
已知正系数二次函数$ax^2+bx+c=0$有实数根,证明:$\max\{a,b,c\}\ge\dfrac{4}{9}(a+b+c)$ 证明:$\max\{a,b,c\}=\dfrac{a+c+|a- ...
- Short But Scary 解题报告
Short But Scary 正解的离线分治+虚树的做法太神奇...搞不到 搞一个菜一点的ddp写写,结果调了200年,下次一定写树剖不写lct了,太难调了... 大概就是按sub2那样维护 你每个 ...
- Mysql注入小tips --持续更新中
学习Web安全好几年了,接触最多的是Sql注入,一直最不熟悉的也是Sql注入.OWASP中,Sql注入危害绝对是Top1.花了一点时间研究了下Mysql类型的注入. 文章中的tips将会持续更新,先说 ...
- Springboot 5.Springboot 返回cookies信息的post接口开发
首先创建一个类,类里面首先登陆获取到cookie,然后带着cookie去发送请求 package com.course.server; import com.course.bean.User; imp ...
- 第六节: 六类Calander处理六种不同的时间场景
背景介绍及其使用 该章节主要补充介绍,在前一章四类触发器的基础上配合六大Canlander来动态删减某些时间,来满足更多的应用场景. 1. DailyCalendar:动态排除某天的某些字段. (需求 ...
- JQuery对象关系图
上图转自:http://www.cnblogs.com/haogj/archive/2010/04/19/1715762.html 自定义函数示例: $.fn.jAccordionunfold = f ...
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场
1. 静电场: 由静止电荷产生的稳定电场. 2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$ ...
- Chrome 禁止从页面打开 Data URI 网址了
现如今,网民的网络账户被盗,很有可能是被“钓鱼”了.去年的一份安全报告中指出:“近85%的资金损失是通过钓鱼网址泄露支付信息造成的”. 传统的钓鱼网站通常是申请一个和被冒充网站相似的域名,比如 tao ...