Surjectivity is stable under base change
Nowadays, I close a new small case.
Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.
The diagram is as following
$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$
In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.
First Step (reduce to affine case). We will prove a more stronger statement,
For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.
Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.
Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.
$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$
Second Step (some computation of tensor product). We show the following
Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.
The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$
Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.
Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.
Surjectivity is stable under base change的更多相关文章
- 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)
Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...
- C++ Core Guidelines
C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...
- 说说设计模式~适配器模式(Adapter)
返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...
- CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发
CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...
- Raspberry Pi Kernel Compilation 内核编译官方文档
elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...
- 1027. Colors in Mars (20) PAT
题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...
- PHP 使用用户自定义的比较函数对数组中的值进行排序
原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort — 使用用户自定义的比较函数对数组中的值进行排序 说明 bool ...
- libevent源码阅读笔记(一):libevent对epoll的封装
title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...
- RPi Kernel Compilation
Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...
随机推荐
- 【测试工程师面试】 记录XX银行面试
LZ在一个18线小城市做测试,近来想走出自己的舒适区,去做一点不一样的测试工作. 18线地区,测试工作并不多.最好的差不多就是LZ目前待着的公司了.遂决定去魔都闯荡几年,对一个在魔都无房无车无户口的人 ...
- Docker容器监控(十)--技术流ken
docker自带的监控命令 docker自带了三个监控命令即ps, top, stats ps docker ps 可以帮助我们很快的了解当前正在运行的容器 -a:会显示已经停掉的容器 [root@h ...
- 第47章 授权端点(Authorize Endpoint) - Identity Server 4 中文文档(v1.0.0)
授权端点可用于通过浏览器请求令牌或授权码.此过程通常涉及最终用户的身份验证和可选的同意. 注意 IdentityServer支持OpenID Connect和OAuth 2.0授权请求参数的子集.有关 ...
- file_get_contents('php://input') 和POST的区别
之前记得写过这2者的区别,今天看群里有个朋友也提出了怪异的问题,说是“file_get_contents('php://input')获取不到curl post请求的数据的问题”?其实这并不是所谓的& ...
- Java开发笔记(四十六)类的构造方法
前面介绍了如何定义一个简单的类,以及它的成员属性和成员方法,从示例代码可以看到,不管是OrangeSimple还是OrangeMember,都要先利用关键字new创建一个实例,然后才能通过实例名称访问 ...
- 用node.js express设置路径后 子路径下的页面访问静态资源路径出问题
在routes/news_mian.js 设置了访问news_main.html 的路径 '/',通知设置一个访问news-page.html的子路径'/newspage'子路径.但是在访问loacl ...
- console对象探究
作为一个前端,console.log()可能是你最常用的方法,打印打印再打印,但是其实console对象上有用的方法有很多,来,各位看官上眼 分类输出 厌倦了 console.log 单调的输出?欢迎 ...
- 【Dojo 1.x】笔记7 配置对象dojoConfig的内容1:has属性、加载器的属性
说完了出身,即出身自dojo/_base/目录下的config模块,那就要好好讲讲这对象有什么可以写的属性了. 1. has属性 官方说是用于更好的特征检测的,具体有什么用现在还不得知. 例如: &l ...
- 牛客网:Java重命名文件
项目介绍 不管是C/C++还是JAVA,都可能生成一些持久性数据,我们可以将数据存储在文件或数据库中,此项目主要训练学习Java对本地磁盘的文件重命名,例如C:\nowcoder.txt重命名C:\n ...
- stereoscopic 3D
色分(Anaglyph)模式:典型的如红蓝立体,是利用红镜片只允许红光通过,蓝镜片只允许蓝光通过的原理,将两幅视差的图片(一张红色.一张蓝色)叠加构成一张立体图片 由于红蓝立体去掉了绿色分量,会导致最 ...