Nowadays, I close a new small case.

Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.

The diagram is as following

$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$

In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.

First Step (reduce to affine case). We will prove a more stronger statement,

For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.

Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.

Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.

$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$

Second Step (some computation of tensor product). We show the following

Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.

The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$

Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.

Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.

Surjectivity is stable under base change的更多相关文章

  1. 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)

    Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...

  2. C++ Core Guidelines

    C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...

  3. 说说设计模式~适配器模式(Adapter)

    返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...

  4. CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发

    CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...

  5. Raspberry Pi Kernel Compilation 内核编译官方文档

    elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...

  6. 1027. Colors in Mars (20) PAT

    题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...

  7. PHP 使用用户自定义的比较函数对数组中的值进行排序

    原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort —      使用用户自定义的比较函数对数组中的值进行排序 说明       bool ...

  8. libevent源码阅读笔记(一):libevent对epoll的封装

    title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...

  9. RPi Kernel Compilation

    Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...

随机推荐

  1. grafana使用详解--技术流ken

    grafana简介 Grafana是一个跨平台的开源的度量分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知.它主要有以下六大特点: 1.展示方式:快速灵活的客户端图表,面板插件有 ...

  2. asp.net 建多个项目实现三层的实例——读取一张表中的记录条数

    学习asp.net两周,通过学习发现,.net和php之间的区别还是蛮大的,比php要复杂一些,开始学习的有些吃力,后来跟着传智播客里的老师学习,渐渐的学到了一些东西. 今天要记录一下.net里的简单 ...

  3. ueditor笔记

    一.ueditor是什么 UEditor 是由百度「FEX前端研发团队」开发的所见即所得富文本web编辑器,具有轻量,可定制,注重用户体验等特点,开源基于MIT协议,允许自由使用和修改代码. 二.ue ...

  4. jsp基础语言-jsp异常

    JSP异常 jsp页面执行时会出现两种异常,实际是javax.servlet.jsp包中的两类异常JsError和JspException. 1.JsError 在jsp文件转换成servlet文件时 ...

  5. Go开发之路 -- 流程控制

    1. if else if 条件 { } else { // else必须写在这里 } // 写一个程序, 从终端读取输入, 并转成整数. 如果转成整数出错, // 则输出'can not conve ...

  6. sublime实现一键代码格式化

    效果预览 实现 首先下载插件SublimeAstyleFormatter 方法:ctrl + shift + P后输入install Package. 等待一段时间后输入SublimeAstyleFo ...

  7. Get-CrmSetting返回Unable to connect to the remote server的解决办法

    摘要: 微软动态CRM专家罗勇 ,回复302或者20190125可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 在Dynam ...

  8. 我想要革命想要解脱——bootstrap常见问题及解决方式

    最近一个月,恍若隔世,天天加班,昨晚终于发版了,今天才喘一口气.有时候,即便你工作效率再怎么高,撸码再怎么快也无可避免的会加班.不信的话,可以先给你定一个交付时间,然后不断的给你加需求,就让你一个人做 ...

  9. Hibernate从入门到了解

    目录 Hibernate的介绍与执行流程 运行流程: Hibernate运行环境搭建 Hibernate的基础示例 持久类的编写 持久类的介绍 几个考虑遵守的规则: 补充: Hibernate核心文件 ...

  10. Go-Ethereum 1.7.2 结合 Mist 0.9.2 实现代币智能合约的实例

    目录 目录 1.什么是 Mist 2.Mist 在哪里下载? 3.Mist 有哪些依赖? 4.如何安装 Mist? 4.1.安装 Mist 依赖工具包 4.2.安装 Mist 4.3.启动 Mist, ...