package com.mxgraph.online;

import java.util.Arrays;

/** A very fast and memory efficient class to encode and decode to and from BASE64 in full accordance
* with RFC 2045.<br><br>
* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is about 10 times faster
* on small arrays (10 - 1000 bytes) and 2-3 times as fast on larger arrays (10000 - 1000000 bytes)
* compared to <code>sun.misc.Encoder()/Decoder()</code>.<br><br>
*
* On byte arrays the encoder is about 20% faster than Jakarta Commons Base64 Codec for encode and
* about 50% faster for decoding large arrays. This implementation is about twice as fast on very small
* arrays (&lt 30 bytes). If source/destination is a <code>String</code> this
* version is about three times as fast due to the fact that the Commons Codec result has to be recoded
* to a <code>String</code> from <code>byte[]</code>, which is very expensive.<br><br>
*
* This encode/decode algorithm doesn't create any temporary arrays as many other codecs do, it only
* allocates the resulting array. This produces less garbage and it is possible to handle arrays twice
* as large as algorithms that create a temporary array. (E.g. Jakarta Commons Codec). It is unknown
* whether Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays but since performance
* is quite low it probably does.<br><br>
*
* The encoder produces the same output as the Sun one except that the Sun's encoder appends
* a trailing line separator if the last character isn't a pad. Unclear why but it only adds to the
* length and is probably a side effect. Both are in conformance with RFC 2045 though.<br>
* Commons codec seem to always att a trailing line separator.<br><br>
*
* <b>Note!</b>
* The encode/decode method pairs (types) come in three versions with the <b>exact</b> same algorithm and
* thus a lot of code redundancy. This is to not create any temporary arrays for transcoding to/from different
* format types. The methods not used can simply be commented out.<br><br>
*
* There is also a "fast" version of all decode methods that works the same way as the normal ones, but
* har a few demands on the decoded input. Normally though, these fast verions should be used if the source if
* the input is known and it hasn't bee tampered with.<br><br>
*
* If you find the code useful or you find a bug, please send me a note at base64 @ miginfocom . com.
*
* Licence (BSD):
* ==============
*
* Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
* Neither the name of the MiG InfoCom AB nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* @version 2.2
* @author Mikael Grev
* Date: 2004-aug-02
* Time: 11:31:11
*/ public class mxBase64
{
private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
.toCharArray(); private static final int[] IA = new int[256];
static
{
Arrays.fill(IA, -1);
for (int i = 0, iS = CA.length; i < iS; i++)
IA[CA[i]] = i;
IA['='] = 0;
} // ****************************************************************************************
// * char[] version
// **************************************************************************************** /** Encodes a raw byte array into a BASE64 <code>char[]</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static char[] encodeToChar(byte[] sArr, boolean lineSep)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new char[0]; int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
char[] dArr = new char[dLen]; // Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;)
{
// Copy next three bytes into lower 24 bits of int, paying attension to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff); // Encode the int into four chars
dArr[d++] = CA[(i >>> 18) & 0x3f];
dArr[d++] = CA[(i >>> 12) & 0x3f];
dArr[d++] = CA[(i >>> 6) & 0x3f];
dArr[d++] = CA[i & 0x3f]; // Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2)
{
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
} // Pad and encode last bits if source isn't even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0)
{
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0); // Set last four chars
dArr[dLen - 4] = CA[i >> 12];
dArr[dLen - 3] = CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';
dArr[dLen - 1] = '=';
}
return dArr;
} /** Decodes a BASE64 encoded char array. All illegal characters will be ignored and can handle both arrays with
* and without line separators.
* @param sArr The source array. <code>null</code> or length 0 will return an empty array.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(char[] sArr)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0]; // Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[sArr[i]] < 0)
sepCnt++; // Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null; int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;)
if (sArr[i] == '=')
pad++; int len = ((sLen - sepCnt) * 6 >> 3) - pad; byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++)
{ // j only increased if a valid char was found.
int c = IA[sArr[s++]];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len)
{
dArr[d++] = (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
} /** Decodes a BASE64 encoded char array that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(char[])}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(char[] sArr)
{
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0]; int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx]] < 0)
sIx++; // Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx]] < 0)
eIx--; // get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0; int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]]; // Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i; // If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19)
{
sIx += 2;
cc = 0;
}
} if (d < len)
{
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6); for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
} return dArr;
} // ****************************************************************************************
// * byte[] version
// **************************************************************************************** /** Encodes a raw byte array into a BASE64 <code>byte[]</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static byte[] encodeToByte(byte[] sArr, boolean lineSep)
{
// Check special case
int sLen = sArr != null ? sArr.length : 0;
if (sLen == 0)
return new byte[0]; int eLen = (sLen / 3) * 3; // Length of even 24-bits.
int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count
int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
byte[] dArr = new byte[dLen]; // Encode even 24-bits
for (int s = 0, d = 0, cc = 0; s < eLen;)
{
// Copy next three bytes into lower 24 bits of int, paying attension to sign.
int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8
| (sArr[s++] & 0xff); // Encode the int into four chars
dArr[d++] = (byte) CA[(i >>> 18) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 12) & 0x3f];
dArr[d++] = (byte) CA[(i >>> 6) & 0x3f];
dArr[d++] = (byte) CA[i & 0x3f]; // Add optional line separator
if (lineSep && ++cc == 19 && d < dLen - 2)
{
dArr[d++] = '\r';
dArr[d++] = '\n';
cc = 0;
}
} // Pad and encode last bits if source isn't an even 24 bits.
int left = sLen - eLen; // 0 - 2.
if (left > 0)
{
// Prepare the int
int i = ((sArr[eLen] & 0xff) << 10)
| (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0); // Set last four chars
dArr[dLen - 4] = (byte) CA[i >> 12];
dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f];
dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';
dArr[dLen - 1] = '=';
}
return dArr;
} /** Decodes a BASE64 encoded byte array. All illegal characters will be ignored and can handle both arrays with
* and without line separators.
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(byte[] sArr)
{
// Check special case
int sLen = sArr.length; // Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[sArr[i] & 0xff] < 0)
sepCnt++; // Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null; int pad = 0;
for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;)
if (sArr[i] == '=')
pad++; int len = ((sLen - sepCnt) * 6 >> 3) - pad; byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++)
{ // j only increased if a valid char was found.
int c = IA[sArr[s++] & 0xff];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
} // Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len)
{
dArr[d++] = (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
} return dArr;
} /** Decodes a BASE64 encoded byte array that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(byte[])}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param sArr The source array. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(byte[] sArr)
{
// Check special case
int sLen = sArr.length;
if (sLen == 0)
return new byte[0]; int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start
while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0)
sIx++; // Trim illegal chars from end
while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0)
eIx--; // get the padding count (=) (0, 1 or 2)
int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0; int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12
| IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]]; // Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i; // If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19)
{
sIx += 2;
cc = 0;
}
} if (d < len)
{
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[sArr[sIx++]] << (18 - j * 6); for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
} return dArr;
} // ****************************************************************************************
// * String version
// **************************************************************************************** /** Encodes a raw byte array into a BASE64 <code>String</code> representation i accordance with RFC 2045.
* @param sArr The bytes to convert. If <code>null</code> or length 0 an empty array will be returned.
* @param lineSep Optional "\r\n" after 76 characters, unless end of file.<br>
* No line separator will be in breach of RFC 2045 which specifies max 76 per line but will be a
* little faster.
* @return A BASE64 encoded array. Never <code>null</code>.
*/
public final static String encodeToString(byte[] sArr, boolean lineSep)
{
// Reuse char[] since we can't create a String incrementally anyway and StringBuffer/Builder would be slower.
return new String(encodeToChar(sArr, lineSep));
} /** Decodes a BASE64 encoded <code>String</code>. All illegal characters will be ignored and can handle both strings with
* and without line separators.<br>
* <b>Note!</b> It can be up to about 2x the speed to call <code>decode(str.toCharArray())</code> instead. That
* will create a temporary array though. This version will use <code>str.charAt(i)</code> to iterate the string.
* @param str The source string. <code>null</code> or length 0 will return an empty array.
* @return The decoded array of bytes. May be of length 0. Will be <code>null</code> if the legal characters
* (including '=') isn't divideable by 4. (I.e. definitely corrupted).
*/
public final static byte[] decode(String str)
{
// Check special case
int sLen = str != null ? str.length() : 0;
if (sLen == 0)
return new byte[0]; // Count illegal characters (including '\r', '\n') to know what size the returned array will be,
// so we don't have to reallocate & copy it later.
int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
for (int i = 0; i < sLen; i++)
// If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
if (IA[str.charAt(i)] < 0)
sepCnt++; // Check so that legal chars (including '=') are evenly divideable by 4 as specified in RFC 2045.
if ((sLen - sepCnt) % 4 != 0)
return null; // Count '=' at end
int pad = 0;
for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;)
if (str.charAt(i) == '=')
pad++; int len = ((sLen - sepCnt) * 6 >> 3) - pad; byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = 0;
for (int j = 0; j < 4; j++)
{ // j only increased if a valid char was found.
int c = IA[str.charAt(s++)];
if (c >= 0)
i |= c << (18 - j * 6);
else
j--;
}
// Add the bytes
dArr[d++] = (byte) (i >> 16);
if (d < len)
{
dArr[d++] = (byte) (i >> 8);
if (d < len)
dArr[d++] = (byte) i;
}
}
return dArr;
} /** Decodes a BASE64 encoded string that is known to be resonably well formatted. The method is about twice as
* fast as {@link #decode(String)}. The preconditions are:<br>
* + The array must have a line length of 76 chars OR no line separators at all (one line).<br>
* + Line separator must be "\r\n", as specified in RFC 2045
* + The array must not contain illegal characters within the encoded string<br>
* + The array CAN have illegal characters at the beginning and end, those will be dealt with appropriately.<br>
* @param s The source string. Length 0 will return an empty array. <code>null</code> will throw an exception.
* @return The decoded array of bytes. May be of length 0.
*/
public final static byte[] decodeFast(String s)
{
// Check special case
int sLen = s.length();
if (sLen == 0)
return new byte[0]; int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start
while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0)
sIx++; // Trim illegal chars from end
while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0)
eIx--; // get the padding count (=) (0, 1 or 2)
int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count '=' at end.
int cCnt = eIx - sIx + 1; // Content count including possible separators
int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1
: 0; int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes.
int d = 0;
for (int cc = 0, eLen = (len / 3) * 3; d < eLen;)
{
// Assemble three bytes into an int from four "valid" characters.
int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12
| IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)]; // Add the bytes
dArr[d++] = (byte) (i >> 16);
dArr[d++] = (byte) (i >> 8);
dArr[d++] = (byte) i; // If line separator, jump over it.
if (sepCnt > 0 && ++cc == 19)
{
sIx += 2;
cc = 0;
}
} if (d < len)
{
// Decode last 1-3 bytes (incl '=') into 1-3 bytes
int i = 0;
for (int j = 0; sIx <= eIx - pad; j++)
i |= IA[s.charAt(sIx++)] << (18 - j * 6); for (int r = 16; d < len; r -= 8)
dArr[d++] = (byte) (i >> r);
} return dArr;
}
}

比sun.misc.Encoder()/Decoder()的base64更高效的mxBase64算法的更多相关文章

  1. sun.misc.BASE64Encoder图片编码,并在页面显示

    Data URI scheme是在RFC2397中定义的,目的是将一些小的数据,直接嵌入到网页中,从而不用再从外部文件载入.在上面的Data URI中,data表示取得数据的协定名称,image/pn ...

  2. sun.misc.BASE64Decoder的风险

    问题描述 最近需要使用Base64上传图片,但是返现sun.misc.BASE64Decoder 为已经过期的包,此包为以前sun公司的内部包,可以下载此包,但是不利于现在Maven方式构建,可能会在 ...

  3. JDK从1.8升级到9.0.1后sun.misc.BASE64Decoder和sun.misc.BASE64Encoder不可用

    目录 描述 原因分析 处理办法 参考 描述 最近研究把项目的JDK升级从1.8升级到9.0.1,在eclipse上配置好JDK为9后,发现项目有错,查看发现sun.misc.BASE64Decoder ...

  4. java对象的内存布局(二):利用sun.misc.Unsafe获取类字段的偏移地址和读取字段的值

    在上一篇文章中.我们列出了计算java对象大小的几个结论以及jol工具的使用,jol工具的源代码有兴趣的能够去看下.如今我们利用JDK中的sun.misc.Unsafe来计算下字段的偏移地址,一则验证 ...

  5. sun.misc.Unsafe 详解

    原文地址 译者:许巧辉 校对:梁海舰 Java是一门安全的编程语言,防止程序员犯很多愚蠢的错误,它们大部分是基于内存管理的.但是,有一种方式可以有意的执行一些不安全.容易犯错的操作,那就是使用Unsa ...

  6. sun.misc jar包

    一直以来Base64算法的加密解密都是使用sun.misc包下的BASE64Encoder及BASE64Decoder来进行的.但是这个类是sun公司的内部方法,并没有在Java API中公开过,不属 ...

  7. eclipse 中 import sun.misc.BASE64Decoder; 报错

    from://http://blog.sina.com.cn/s/blog_48964b120101ahrf.html 在android做3DES加密功能时 eclipse 中 import sun. ...

  8. Java sun.misc.unsafe类

    Java是一个安全的开发工具,它阻止开发人员犯很多低级的错误,而大部份的错误都是基于内存管理方面的.如果你想搞破坏,可以使用Unsafe这个类.这个类是属于sun.*API中的类,并且它不是J2SE中 ...

  9. Java Magic. Part 4: sun.misc.Unsafe

    Java Magic. Part 4: sun.misc.Unsafe @(Base)[JDK, Unsafe, magic, 黑魔法] 转载请写明:原文地址 系列文章: -Java Magic. P ...

随机推荐

  1. Java开发笔记(八)五种算术运算符

    计算机科学起源于数学,早期的计算机也确实多用于数学运算,以至于后来的各路编程语言,仍然保留着古老的加减乘除四则运算.这四则运算在Java语言中有专门的运算符加以表示,像加法符号“+”对应Java的“+ ...

  2. 【Linux】常用命令,持续更新

    Linux 一.linux的组成 内核,shell,文件系统,应用程序 二.linux目录结构 bin,sbin,home,root,boot,dev,etc,lib, 三.文件目录操作 ls,cd, ...

  3. Mybatis框架基础支持层——反射工具箱之泛型解析工具TypeParameterResolver(4)

    简介:TypeParameterResolver是一个工具类,提供一系列的静态方法,去解析类中的字段.方法返回值.方法参数的类型. 在正式介绍TypeParameterResolver之前,先介绍一个 ...

  4. jsp基础语言-jsp动作

    jsp动作是一组jsp内置的标签,用来控制jsp的行为,执行一些常用的jsp页面动作.通过jsp动作实现使用多行java代码能够实现的效果,即对常用的jsp功能进行抽象与封装. jsp共有七种标准的“ ...

  5. Catalan卡特兰数入门

    简介 卡特兰数是组合数学中的一种常见数列 它的前几项为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, ...

  6. 网络最大流算法—最高标号预流推进HLPP

    吐槽 这个算法.. 怎么说........ 学来也就是装装13吧.... 长得比EK丑 跑的比EK慢 写着比EK难 思想 大家先来猜一下这个算法的思想吧:joy: 看看人家的名字——最高标号预留推进 ...

  7. 轨迹系列6——车载GPS对接方案汇总小结(809、自定义协议、前置库、WS)

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 最近在不同项目中对接了多个车载GPS厂商服务终端,绝大多数厂商 ...

  8. iOS----------拨打电话的3种方式

    iOS实现拨打电话的方式:   方法一.requestWithURL,此方法拨打前弹出提示 NSMutableString * string = [[NSMutableString alloc] in ...

  9. TextView走马灯

    设置textView走马灯形式显示: android:marqueeRepeatLimit="marquee_forever" android:scrollHorizontally ...

  10. Android 解决通过自定义设置打开热点后手机搜索不到热点的问题。

    开发过程中出现了通过自定义设置打开热点后手机搜索不到热点的问题. 后来通过观看  /data/misc/wifi  目录下的  hostapd.conf  文件,发现是 interface=ap0 d ...