题目链接:http://poj.org/problem?id=3517

And Then There Was One
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5014   Accepted: 2685

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.


Initial state

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Final state
 

Figure 1: An example game

Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3: You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only count stones that are still on the circle and ignore those already removed. Stone 3 is ignored in this case.

Steps 4–7: You continue until only one stone is left. Notice that in later steps when only a few stones remain, the same stone may be skipped multiple times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The last dataset is followed by a line containing three zeros. Numbers in a line are separated by a single space. A dataset satisfies the following conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ m ≤ n

The number of datasets is less than 100.

Output

For each dataset, output a line containing the stone number left in the final state. No extra characters such as spaces should appear in the output.

Sample Input

8 5 3
100 9999 98
10000 10000 10000
0 0 0

Sample Output

1
93
2019 题意:n个数排成一个圈,第一次删除m以后每次数到k个数删除一次,求最后一个被杉树的数
题解:是约瑟夫环问题的变形,距离上次学习约瑟夫环有一定时间了,上次不理解,这次理解递推的数学过程了:
当第n次,第f(n)个人出局了的时候剩下的n-1个人就构成了一个新的约瑟夫环问题,那么现在如果知道了第n-1次是第f(n-1)个人出局了,那么反着想,但是转化的时候是要从k+1个人开始计数,那么相当是吧k+1-->0;
k+2-->1.......所以在要想知道了f(n-1)想求f(n)就要用f(n) = [k+1+f(n-1)]%n;现在好了递归函数出来了那么就可以写一个普通约瑟夫环的代码:
 #include<cstdio>
using namespace std;
int main()
{
int n,m,i,s = ;
printf("N M =");//n个数,每次数m个数出列
scanf("%d%d",&n,&m);
for(i = ; i <= n; i++)
{
s = (s + m) % i;
}
printf("\n The winner is %d\n",s+);
}


这个题,要注意是从m开始计数的,但是由于递归的时候每次操作都是f(n) = (f(n-1)+k)%n;

但是实际上第一次的时候是删除掉了第m个数,而且编号是从1开始编号的,所以正常的将最后一组重新编号的时候f`(n) = [f(n-1)+m+1]%n; 所以最后答案应该是f`(n) = (m-k+1+f(n))%n;

ac代码:

 #include<cstdio>
using namespace std;
const int maxn = ;
int f[maxn]; int main()
{
int n, k, m;
while(~scanf("%d%d%d",&n,&k,&m)){
if(n==) return ;
f[] = ;
for(int i = ; i <= n; i++)f[i] = (f[i-]+k)%i;
int ans = (m-k++f[n])%n;
if(ans<=) ans+=n;//必须注意边界情况因为最后出现了-k所以要考虑负数的情况
printf("%d\n",ans);
}
return ;
}
 

And Then There Was One(约瑟夫问题变形)的更多相关文章

  1. 【约瑟夫环变形】UVa 1394 - And Then There Was One

    首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...

  2. HDU 5643 King's Game | 约瑟夫环变形

    经典约瑟夫环 }; ; i<=n; i++) { f[i] = (f[i-] + k) % i; } 变形:k是变化的 #include <iostream> #include &l ...

  3. Poj 3517 And Then There Was One(约瑟夫环变形)

    简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个 ...

  4. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  5. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  6. G - And Then There Was One (约瑟夫环变形)

    Description Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbe ...

  7. UVA1452|LA4727-----Jump------经典的约瑟夫公式的变形(DP)

    本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...

  8. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  9. 2016 Multi-University Training Contest 10

    solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...

随机推荐

  1. 安装cocoa pods时出现Operation not permitted - /usr/bin/xcodeproj的问题

    安装cocoa pods时, 在命令行中输入: 安装:sudo gem install cocoapods报Operation not permitted - /usr/bin/xcodeproj这个 ...

  2. SP的封装(数据持久化方式一)

    1.先看一段描述: Interface for accessing and modifying preference data returned by Context.getSharedPrefere ...

  3. django2 快速安装指南

    django2 快速安装指南 1. 安装 作为一个 Python Web 框架,Django需要Python的支持.请参阅 我可以在Django中使用哪些Python版本?了解详情.Python包含一 ...

  4. docker 保存 加载(导入 导出镜像

    tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...

  5. 阿里云服务器 ubuntu14.04 配置ftp

    1.执行apt-get update 2.使用apt-get命令安装vsftp:apt-get install vsftpd -y 3.先检查一下nologin的位置,通常在/usr/sbin/nol ...

  6. Head First设计模式之抽象工厂模式

    一.定义 给客户端提供一个接口,可以创建多个产品族中的产品对象 ,而且使用抽象工厂模式还要满足一下条件:     1)系统中有多个产品族,而系统一次只可能消费其中一族产品.      2)同属于同一个 ...

  7. zabbix2.2部署安装(安装环境Centos 6.* X64)

    1.在已有的LAMP或者LNMP的基础上安装zabbix,安装一些依赖包: 安装epel源:rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64 ...

  8. IE8及其以下浏览器关于圆角表框的问题

    css部分 yuan { border: 2px solid #C0C0C0; -moz-border-radius: 50%; -webkit-border-radius: 50%; border- ...

  9. sqlserver资源

    1.数据库“高可用性”和“灾难恢复”技术 参考: niyi0318的专栏

  10. Java学习笔记19(String类)

    String代表字符串,在Java中,所有的字符串字面值都作为此类的实例实现 字符串的特点以及简单的原理分析: package demo; /* * String类的特点: * 所有的"&q ...