MapReduce处理流程
MapReduce是Hadoop2.x的一个计算框架,利用分治的思想,将一个计算量很大的作业分给很多个任务,每个任务完成其中的一小部分,然后再将结果合并到一起。将任务分开处理的过程为map阶段,将每个小任务的结果合并到一起的过程为reduce阶段。下面先从宏观上介绍一下客户端提交一个作业时,Hadoop2.x各个组件之间的联系及处理流程。然后我们再具体看看MapReduce计算框架在执行一个作业时,做了些什么。
YARN
YARN是Hadoop2.x框架下的资源管理系统,其组成部分为:
1)全局资源管理器(global resource manager):整个系统的资源管理和调配。
2)节点管理器(node manager)(每个节点都有一个)负责任务的启动、配置及其资源的监控
3)针对每个应用程序的应用程序管理器(application-specific application master)(因为Hadoop2.x支持的计算框架有很多,不只是MapReduce,还有像storm、spark、Tez不同处理机制的计算框架,所以MapReduce是一种应用程序,每个MapReduce作业是MapReduce类型程序的一个实例)
4)调度器(scheduler)(在资源管理器里)
5)容器(container):一部分CPU和内存组成一个容器,最为资源使用,一个应用程序运行在一组容器中。
在了解了各个组件的功能之后,借助下图,我们看一下提交一个作业的流程:
1)客户端向资源管理器提交作业程序,作业程序的类型决定了使用哪种应用程序管理器(MapReduce、storm、Tez...)
2)资源管理器协调资源,在一个节点上获取一个运行应用程序管理器实例的容器
3)应用程序管理器(application master)在资源管理器中注册
4)应用程序管理器通过资源请求与资源管理器协商资源,包括该容器所在的节点和该容器的详细说明(CPU核数量和内存大小)
5)和 6)应用程序管理器在一个节点上或者多个节点上运行其Map Task和Reduce Task
7)在容器中运行的应用程序向应用程序管理器汇报执行度
8)应用程序执行完毕,应用程序管理器就会从资源管理器中取消注册,作业占用的资源会释放到系统中
MapReduce计算框架
MapReduce总的可以分为map阶段、shuffle阶段和reduce阶段。
map阶段
1)从HDFS中将输入值传输到Mapper节点
除了传输之外,在读取过程中,还需要做一个转换过程,将数据转换为键值对的形式(MapReduce处理的输入必须为键值对的形式),这个过程通过InputFormat完成(默认为TextInputFormat)
2)Mapper
根据自己写的Mapper函数对文件进行处理,同样输出的是键值对(如wordcount中统计收到的数据中每个词出现的次数)
3)Partitioner
Patitioner根据Reducer的数量和自定义的划分方法(没有自定义的话,Hadoop有默认实现)去划分Mapper的输出;划分的结果会按照Mapper输出的键进行排序。
4)Combiner(这一步是可选的)
经过Partitioner排序后,如果作业中配置了Combiner,就会调用Combiner,Combiner就好像在Mapper端提前进行一下Reducer一样。
那为什么要提前进行呢?这是为了尽量减少对网络带宽的需求,比如经典的wordcount程序,在Mapper端处理之后,我们可能得到一个像key = apple,value = {1,1,1,1,1,1}的结果,如果我们能先对其进行一下Combiner,那么就能得到key = apple,value = 6的结果,传输这样的数据,肯定是要比key = apple,value = {1,1,1,1,1,1}的数据节省带宽的。
那既然能够节省传输带宽,为什么又是可选的呢?何不每次都默认执行Combiner?这是因为并不是每一个Mapper都能进行Combiner;比如现在我们的任务要统计一段时间内的每天的最高气温,假设开始有两个Mapper,输出为(0,10,20)和(15,25),那么提前进行Combiner可以使得传递给Reducer端的数据为(20, 25)这样最后的结果还是为25,且传输的数据量变小;但是假如我们要求一段时间内的平均温度呢?如果开始就在Mapper端进行Combiner求平均温度,那么Reducer端得到的数据为(10, 20),算出的平均温度为15,但是实际上的平均温度为(0, 10, 20 , 15 ,25)的平均,为14;所以需要搞清楚Combiner合适不合适提前进行。
shuffle阶段
shuffle阶段要做的事就是保证Mapper输出的数据传输到合适的Reducer进行处理,如下图所示:
shuffle阶段,每个Reducer都会使用HTTP协议从Mapper节点获得自己的划分(Reducer通过Application Master来获取自己应该查询哪些Mapper节点来获取自己划分的信息,因为每个Mapper实例完成后,会通知Application Master运行阶段产生的划分)
reduce阶段
1)Reducer
根据自己写的reduce程序对数据进行处理(如wordcount中将每个单词出现的次数加起来得到总和)
2)将处理结果输出到HDFS
通过OutputFormat完成(默认是TextOutputFormat)
总结
通过对Hadoop2.x框架的处理流程和MapReduce计算框架的处理流程的梳理,可以在进行程序编写时有一个更清楚的认识,下一步应该具体做些什么。
参考:《Hadoop权威指南》
MapReduce处理流程的更多相关文章
- MapReduce基本流程与设计思想初步
1.MapReduce是什么? MapReduce是一种编程模型,用于大规模数据集的并行运算.它借用了函数式的编程概念,是Google发明的一种数据处理模型. 主要思想为:Map(映射)和Reduce ...
- MapReduce工作流程及Shuffle原理概述
引言: 虽然MapReduce计算框架简化了分布式程序设计,将所有的并行程序均需要关注的设计细节抽象成公共模块并交由系统实现,用户只需关注自己的应用程序的逻辑实现,提高了开发效率,但是开发如果对Map ...
- mapreduce执行流程
角色描述:JobClient:执行任务的客户端JobTracker:任务调度器TaskTracker:任务跟踪器Task:具体的任务(Map OR Reduce) 从生命周期的角度来看,mapredu ...
- MapReduce运行流程分析
研究MapReduce已经有一段时间了.起初是从分析WordCount程序开始,后来开始阅读Hadoop源码,自认为已经看清MapReduce的运行流程.现在把自己的理解贴出来,与大家分享,欢迎纠错. ...
- MapReduce执行流程及程序编写
MapReduce 一种分布式计算模型,解决海量数据的计算问题,MapReduce将计算过程抽象成两个函数 Map(映射):对一些独立元素(拆分后的小块)组成的列表的每一个元素进行指定的操作,可以高度 ...
- 辅助排序和Mapreduce整体流程
一.辅助排序 需求:先有一个订单数据文件,包含了订单id.商品id.商品价格,要求将订单id正序,商品价格倒序,且生成结果文件个数为订单id的数量,每个结果文件中只要一条该订单最贵商品的数据. 思路: ...
- Hadoop Mapreduce运行流程
Mapreduce的运算过程为两个阶段: 第一个阶段的map task相互独立,完全并行: 第二个阶段的reduce task也是相互独立,但依赖于上一阶段所有map task并发实例的输出: 这些t ...
- 016_笼统概述MapReduce执行流程结合wordcount程序
数据传输<key,value> File--> <key,value> -->map(key,value) --> mapResult<k ...
- 2.25-2.26 MapReduce执行流程Shuffle讲解
原文链接:https://langyu.iteye.com/blog/992916 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是 ...
随机推荐
- 第28篇 js中let和var
let与var 在js中声明一个变量除了一个var 还有一个let的声明.对于var 在前面的作用域中已经讲过,这次主要说下二者的区别: 在MDN上有这样的一个demo: var list = d ...
- HQL查询——查询返回对象类型分析
关于HQL查询,我们可以结合hibernate的API文档,重点围绕org.hibernate.Query接口,分析其方法,此接口的实例对象是通过通过session.对象的creatQuery(Str ...
- Gradle之恋-任务1
任务作为Gradle的核心功能模块,而且Gradle的任务还可以具有自己的属性和方法,大大扩展了Ant任务的功能.由于任务相关内容比较多,分为两篇来探讨,本篇主要涉及到:任务的定义.任务的属性.任务的 ...
- 抓包工具Wireshark的使用
WireShark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息. WireShark界面简介 启动WireShark的界面如下: 选择网卡 wireshar ...
- SPM HW1 A project
项目分析 --民航航班异常轨迹可视分析 最近完成的一个项目是一个可视化大作业--民航航班异常轨迹可视分析.要求利用已给的8G飞机的飞行记录数据,将飞机的飞行轨迹在浏览器中进行飞行轨迹高维可视化以及对异 ...
- 浅谈jquery插件开发模式
首先根据<jQuery高级编程>的描述来看,jQuery插件开发方式主要有三种: 通过$.extend()来扩展jQuery 通过$.fn 向jQuery添加新的方法 通过$.widget ...
- react.js 获取真实的DOM节点
为了获取真实的dom节点,文本输入框必须有一个 ref 属性,然后 this.refs.[refName] 就会返回这个真实的 DOM 节点. var MyComponent = React.crea ...
- 从 Spring 2.5 开始就可以使用注解来配置依赖注入,而不是采用 XML 来描述一个 bean。
1.在 XML 注入之前进行注解注入,因此后者可以被前者重写. 2.在默认情况下注解在 Spring 容器中不打开,需要配置启动. <beans xmlns="http://www.s ...
- python中try except处理程序异常的三种常用方法
如果你在写python程序时遇到异常后想进行如下处理的话,一般用try来处理异常,假设有下面的一段程序: try: 语句1 语句2 . . 语句N except .........: do somet ...
- Firefox52非HTTPS页面登录页面提示连接不安全的解决办法
背景: Firefox52版本开始,对于非HTTPS协议的登录页面,会提示链接不安全,如下图 解决办法很简单,上HTTPS协议(严重推荐,尤其是祖国这种特殊国情下,上HTTPS的协议好处多多,物超所值 ...