akka-stream是基于Actor模式的,所以也继承了Actor模式的“坚韧性(resilient)”特点,在任何异常情况下都有某种整体统一的异常处理策略和具体实施方式。在akka-stream的官方文件中都有详细的说明和示范例子。我们在这篇讨论里也没有什么更好的想法和范例,也只能略做一些字面翻译和分析理解的事了。下面列出了akka-stream处理异常的一些实用方法:

1、recover:这是一个函数,发出数据流最后一个元素然后根据上游发生的异常终止当前数据流

2、recoverWithRetries:也是个函数,在上游发生异常后改选用后备数据流作为上游继续运行

3、Backoff restart strategy:是RestartSource,RestartFlow,RestartSink的一个属性。为它们提供“逐步延迟重启策略”

4、Supervision strategy:是数据流构件的“异常监管策略”属性。为发生异常的功能阶段Stage提供异常情况处理方法

下面我们就用一些代码例子来示范它们的使用方法:

1、recover:Flow[T].recover函数的款式如下:

  /**
* Recover allows to send last element on failure and gracefully complete the stream
* Since the underlying failure signal onError arrives out-of-band, it might jump over existing elements.
* This stage can recover the failure signal, but not the skipped elements, which will be dropped.
*
* Throwing an exception inside `recover` _will_ be logged on ERROR level automatically.
*
* '''Emits when''' element is available from the upstream or upstream is failed and pf returns an element
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes or upstream failed with exception pf can handle
*
* '''Cancels when''' downstream cancels
*
*/
def recover[T >: Out](pf: PartialFunction[Throwable, T]): Repr[T] = via(Recover(pf))

下面是一个用例:

  Source( to ).map { n =>
if (n < ) n.toString
else throw new Exception("Boooommm!")
}.recover{
case e: Exception => s"truncate stream: ${e.getMessage}"
}.runWith(Sink.foreach(println))

运算结果:


truncate stream: Boooommm!

2、recoverWithRetries:看看它的函数款式:

 /**
* RecoverWithRetries allows to switch to alternative Source on flow failure. It will stay in effect after
* a failure has been recovered up to `attempts` number of times so that each time there is a failure
* it is fed into the `pf` and a new Source may be materialized. Note that if you pass in 0, this won't
* attempt to recover at all.
*
* A negative `attempts` number is interpreted as "infinite", which results in the exact same behavior as `recoverWith`.
*
* Since the underlying failure signal onError arrives out-of-band, it might jump over existing elements.
* This stage can recover the failure signal, but not the skipped elements, which will be dropped.
*
* Throwing an exception inside `recoverWithRetries` _will_ be logged on ERROR level automatically.
*
* '''Emits when''' element is available from the upstream or upstream is failed and element is available
* from alternative Source
*
* '''Backpressures when''' downstream backpressures
*
* '''Completes when''' upstream completes or upstream failed with exception pf can handle
*
* '''Cancels when''' downstream cancels
*
* @param attempts Maximum number of retries or -1 to retry indefinitely
* @param pf Receives the failure cause and returns the new Source to be materialized if any
* @throws IllegalArgumentException if `attempts` is a negative number other than -1
*
*/
def recoverWithRetries[T >: Out](attempts: Int, pf: PartialFunction[Throwable, Graph[SourceShape[T], NotUsed]]): Repr[T] =
via(new RecoverWith(attempts, pf))

attempts代表发生异常过程中尝试恢复次数,0代表不尝试恢复,直接异常中断。<0代表无限尝试次数。下面是一个用例示范:

 val backupSource = Source(List("five","six","seven","eight","nine"))
Source( to ).map { n =>
if (n < ) n.toString
else throw new RuntimeException("Boooommm!")
}.recoverWithRetries(attempts = , {
case e: RuntimeException => backupSource
}
).runWith(Sink.foreach(println))

运算结果:


five
six
seven
eight
nine

3、Backoff-Restart-Strategy:aka-stream预设定了RestartSource,RestartFlow,RestartSink来在Source,Flow,Sink节点实现“逐步延迟重启策略”,即采取一种逐步延后重启时间点的方式来避免多个进程同时争取某一项资源。下面是这三个类型的定义:

/**
* A RestartSource wraps a [[Source]] that gets restarted when it completes or fails.
*
* They are useful for graphs that need to run for longer than the [[Source]] can necessarily guarantee it will, for
* example, for [[Source]] streams that depend on a remote server that may crash or become partitioned. The
* RestartSource ensures that the graph can continue running while the [[Source]] restarts.
*/
object RestartSource { /**
* Wrap the given [[Source]] with a [[Source]] that will restart it when it fails or complete using an exponential
* backoff.
*
* This [[Source]] will never emit a complete or failure, since the completion or failure of the wrapped [[Source]]
* is always handled by restarting it. The wrapped [[Source]] can however be cancelled by cancelling this [[Source]].
* When that happens, the wrapped [[Source]], if currently running will be cancelled, and it will not be restarted.
* This can be triggered simply by the downstream cancelling, or externally by introducing a [[KillSwitch]] right
* after this [[Source]] in the graph.
*
* This uses the same exponential backoff algorithm as [[akka.pattern.Backoff]].
*
* @param minBackoff minimum (initial) duration until the child actor will
* started again, if it is terminated
* @param maxBackoff the exponential back-off is capped to this duration
* @param randomFactor after calculation of the exponential back-off an additional
* random delay based on this factor is added, e.g. `0.2` adds up to `20%` delay.
* In order to skip this additional delay pass in `0`.
* @param sourceFactory A factory for producing the [[Source]] to wrap.
*/
def withBackoff[T](minBackoff: FiniteDuration, maxBackoff: FiniteDuration, randomFactor: Double)(sourceFactory: () ⇒ Source[T, _]): Source[T, NotUsed] = {
Source.fromGraph(new RestartWithBackoffSource(sourceFactory, minBackoff, maxBackoff, randomFactor))
}
} /**
* A RestartFlow wraps a [[Flow]] that gets restarted when it completes or fails.
*
* They are useful for graphs that need to run for longer than the [[Flow]] can necessarily guarantee it will, for
* example, for [[Flow]] streams that depend on a remote server that may crash or become partitioned. The
* RestartFlow ensures that the graph can continue running while the [[Flow]] restarts.
*/
object RestartFlow { /**
* Wrap the given [[Flow]] with a [[Flow]] that will restart it when it fails or complete using an exponential
* backoff.
*
* This [[Flow]] will not cancel, complete or emit a failure, until the opposite end of it has been cancelled or
* completed. Any termination by the [[Flow]] before that time will be handled by restarting it. Any termination
* signals sent to this [[Flow]] however will terminate the wrapped [[Flow]], if it's running, and then the [[Flow]]
* will be allowed to terminate without being restarted.
*
* The restart process is inherently lossy, since there is no coordination between cancelling and the sending of
* messages. A termination signal from either end of the wrapped [[Flow]] will cause the other end to be terminated,
* and any in transit messages will be lost. During backoff, this [[Flow]] will backpressure.
*
* This uses the same exponential backoff algorithm as [[akka.pattern.Backoff]].
*
* @param minBackoff minimum (initial) duration until the child actor will
* started again, if it is terminated
* @param maxBackoff the exponential back-off is capped to this duration
* @param randomFactor after calculation of the exponential back-off an additional
* random delay based on this factor is added, e.g. `0.2` adds up to `20%` delay.
* In order to skip this additional delay pass in `0`.
* @param flowFactory A factory for producing the [[Flow]] to wrap.
*/
def withBackoff[In, Out](minBackoff: FiniteDuration, maxBackoff: FiniteDuration, randomFactor: Double)(flowFactory: () ⇒ Flow[In, Out, _]): Flow[In, Out, NotUsed] = {
Flow.fromGraph(new RestartWithBackoffFlow(flowFactory, minBackoff, maxBackoff, randomFactor))
}
} /**
* A RestartSink wraps a [[Sink]] that gets restarted when it completes or fails.
*
* They are useful for graphs that need to run for longer than the [[Sink]] can necessarily guarantee it will, for
* example, for [[Sink]] streams that depend on a remote server that may crash or become partitioned. The
* RestartSink ensures that the graph can continue running while the [[Sink]] restarts.
*/
object RestartSink { /**
* Wrap the given [[Sink]] with a [[Sink]] that will restart it when it fails or complete using an exponential
* backoff.
*
* This [[Sink]] will never cancel, since cancellation by the wrapped [[Sink]] is always handled by restarting it.
* The wrapped [[Sink]] can however be completed by feeding a completion or error into this [[Sink]]. When that
* happens, the [[Sink]], if currently running, will terminate and will not be restarted. This can be triggered
* simply by the upstream completing, or externally by introducing a [[KillSwitch]] right before this [[Sink]] in the
* graph.
*
* The restart process is inherently lossy, since there is no coordination between cancelling and the sending of
* messages. When the wrapped [[Sink]] does cancel, this [[Sink]] will backpressure, however any elements already
* sent may have been lost.
*
* This uses the same exponential backoff algorithm as [[akka.pattern.Backoff]].
*
* @param minBackoff minimum (initial) duration until the child actor will
* started again, if it is terminated
* @param maxBackoff the exponential back-off is capped to this duration
* @param randomFactor after calculation of the exponential back-off an additional
* random delay based on this factor is added, e.g. `0.2` adds up to `20%` delay.
* In order to skip this additional delay pass in `0`.
* @param sinkFactory A factory for producing the [[Sink]] to wrap.
*/
def withBackoff[T](minBackoff: FiniteDuration, maxBackoff: FiniteDuration, randomFactor: Double)(sinkFactory: () ⇒ Sink[T, _]): Sink[T, NotUsed] = {
Sink.fromGraph(new RestartWithBackoffSink(sinkFactory, minBackoff, maxBackoff, randomFactor))
}
}

注意这些withBackoff[T]中的sourceFactor,flowFactor,sinkFactory,是它们构建了目标构件。下面我们就虚构一个由RestartSource,RestartFlow,RestartSink合组成的数据流:

  val backoffSource = RestartSource.withBackoff(
minBackoff = .seconds,
maxBackoff = .seconds,
randomFactor = 0.2
){ () => Source(List("FileA","FileB","FileC"))} val backoffFlow = RestartFlow.withBackoff(
minBackoff = .seconds,
maxBackoff = .seconds,
randomFactor = 0.2
){ () => Flow[String].map(_.toUpperCase())} val backoffSink = RestartSink.withBackoff(
minBackoff = .seconds,
maxBackoff = .seconds,
randomFactor = 0.2
){ () => Sink.foreach(println)} backoffSource.via(backoffFlow).to(backoffSink).run()

当然,在现实应用中这几个构件都可能涉及到一些资源的占用,如数据库、网络服务等。下面是运算结果显示:

FILEA
FILEB
FILEC
FILEA
FILEB
FILEC
FILEA
FILEB
FILEC

这个stream是重复循环的。我们只有通过KillSwitch来手动终止它:

  val killSwitch = backoffSource.viaMat(KillSwitches.single)(Keep.right)
.viaMat(backoffFlow)(Keep.left)
.toMat(backoffSink)(Keep.left)
.run() Thread.sleep()
killSwitch.shutdown()

4、Supervisor-Strategy:这种模式是受Actor监管策略模式的启发,在aka-stream的一些功能节点Stage上实现的。对于某些功能节点Stage来说,可能这种监管模式就根本不适用,如连接外部系统的Stage,因为造成异常失败的因素可能还是会重复造成异常。对于出现异常的stream,Supervisor-Strategy提供了三种处理方法:

Stop:终结stream,返回异常

Resume:越过当前元素,继续运行

Restart:重新启动、越过当前元素、清除任何内部状态

akka-stream的默认异常处理方式是Stop,即立即终止数据流,返回异常。

我们可以通过ActorMaterializerSettings().withSupervisionStrategy以及Flow[T].withAttributes(ActorAttributes.withSupervisionStrategy来设定异常监管策略。下面这个例子使用了ActorMaterializerSettings来设定Supervision:

 implicit val mat2 = ActorMaterializer(
ActorMaterializerSettings(sys).withSupervisionStrategy(decider)
.withInputBuffer(initialSize = , maxSize = )
) Source( to ).map { n =>
if (n != ) n.toString
else throw new ArithmeticException("no 3 please!")
}.runWith(Sink.foreach(println)) Thread.sleep()
println("")
Thread.sleep() Source( to ).map { n =>
if (n != ) n.toString
else throw new Exception("no 3 please!")
}.runWith(Sink.foreach(println))

上面两个stream分别示范了Resume和Stop策略的效果,如下:


在下面的这个例子里我们在Flow构件的属性Attributes里设定了SupervisionStrategy:

  val decider : Supervision.Decider = {
case _: IllegalArgumentException => Supervision.Restart
case _ => Supervision.Stop
}
val flow = Flow[Int]
.scan() { (acc, elem) =>
if (elem < ) throw new IllegalArgumentException("negative not allowed")
else acc + elem
}.withAttributes(ActorAttributes.supervisionStrategy(decider)) Source(List(, , -, , )).via(flow)
.runWith(Sink.foreach(println))

以上例子中对异常采用了Restart。从下面的运算结果中我们确定了Restart在重启过程中清除了内部状态,也就是说从发生异常的位置开始重新进行计算了:


好了,下面是这次示范涉及的完整源代码:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import scala.concurrent.duration._ object ExceptionHandling extends App {
implicit val sys = ActorSystem("demoSys")
implicit val ec = sys.dispatcher
implicit val mat = ActorMaterializer(
ActorMaterializerSettings(sys)
.withInputBuffer(initialSize = , maxSize = )
) /*
Source(0 to 10).map { n =>
if (n < 5) n.toString
else throw new Exception("Boooommm!")
}.recover{
case e: Exception => s"truncate stream: ${e.getMessage}"
}.runWith(Sink.foreach(println))
*/
/*
val backupSource = Source(List("five","six","seven","eight","nine"))
Source(0 to 10).map { n =>
if (n < 5) n.toString
else throw new RuntimeException("Boooommm!")
}.recoverWithRetries(attempts = 0, {
case e: RuntimeException => backupSource
}
).runWith(Sink.foreach(println)) val backoffSource = RestartSource.withBackoff(
minBackoff = 3.seconds,
maxBackoff = 30.seconds,
randomFactor = 0.2
){ () => Source(List("FileA","FileB","FileC"))} val backoffFlow = RestartFlow.withBackoff(
minBackoff = 3.seconds,
maxBackoff = 30.seconds,
randomFactor = 0.2
){ () => Flow[String].map(_.toUpperCase())} val backoffSink = RestartSink.withBackoff(
minBackoff = 3.seconds,
maxBackoff = 30.seconds,
randomFactor = 0.2
){ () => Sink.foreach(println)} //backoffSource.via(backoffFlow).to(backoffSink).run() val killSwitch = backoffSource.viaMat(KillSwitches.single)(Keep.right)
.viaMat(backoffFlow)(Keep.left)
.toMat(backoffSink)(Keep.left)
.run() Thread.sleep(1000)
killSwitch.shutdown()
*/
/*
val decider: Supervision.Decider = {
case _: ArithmeticException => Supervision.Resume
case _ => Supervision.Stop
} implicit val mat2 = ActorMaterializer(
ActorMaterializerSettings(sys).withSupervisionStrategy(decider)
.withInputBuffer(initialSize = 16, maxSize = 16)
) Source(1 to 5).map { n =>
if (n != 3) n.toString
else throw new ArithmeticException("no 3 please!")
}.runWith(Sink.foreach(println)) Thread.sleep(1000)
println("")
Thread.sleep(1000) Source(1 to 5).map { n =>
if (n != 5) n.toString
else throw new Exception("no 3 please!")
}.runWith(Sink.foreach(println))
*/
val decider : Supervision.Decider = {
case _: IllegalArgumentException => Supervision.Restart
case _ => Supervision.Stop
}
val flow = Flow[Int]
.scan() { (acc, elem) =>
if (elem < ) throw new IllegalArgumentException("negative not allowed")
else acc + elem
}.withAttributes(ActorAttributes.supervisionStrategy(decider)) Source(List(, , -, , )).via(flow)
.runWith(Sink.foreach(println)) scala.io.StdIn.readLine()
sys.terminate() }

Akka(26): Stream:异常处理-Exception handling的更多相关文章

  1. 面向对象程序设计-C++ Stream & Template & Exception【第十五次上课笔记】

    这是本门<面向对象程序设计>课最后一次上课,刚好上完了这本<Thinking in C++> :) 这节课首先讲了流 Stream 的概念 平时我们主要用的是(1)在屏幕上输入 ...

  2. Exception Handling Considered Harmful

    异常处理被认为存在缺陷 Do, or do not. There is no try. - Yoda, The Empire Strikes Back (George Lucas) by Jason ...

  3. Akka(32): Http:High-Level-Api,Route exception handling

    Akka-http routing DSL在Route运算中抛出的异常是由内向外浮出的:当内层Route未能捕获异常时,外一层Route会接着尝试捕捉,依次向外扩展.Akka-http提供了Excep ...

  4. Exception handling 异常处理的本质

    异常处理的本质:状态回滚或者状态维护. https://en.wikipedia.org/wiki/Exception_handling In general, an exception breaks ...

  5. 异常处理与MiniDump详解(3) SEH(Structured Exception Handling)

    write by 九天雁翎(JTianLing) -- blog.csdn.net/vagrxie 讨论新闻组及文件 一.   综述 SEH--Structured Exception Handlin ...

  6. C#编程.异常处理(Exception Handling Statements)

    C#语言包含结构化异常处理(Structured Exception Handling,SEH). throw The throw statement is used to signal the oc ...

  7. Exception Handling in ASP.NET Web API webapi异常处理

    原文:http://www.asp.net/web-api/overview/error-handling/exception-handling This article describes erro ...

  8. C# to IL 10 Exception Handling(异常处理)

    Exception handling in IL is a big let down. We expected a significant amount of complexity,but were ...

  9. Exception Handling引入MVP

    异常处理(Exception Handling)是所有系统的最基本的基础操作之一,其它的比如日志(Logging).审核(Auditing).缓存(Caching).事务处理(Transaction) ...

随机推荐

  1. jquery 获取及设置input各种类型的值 (转)

    jQuery操作input值总结 获取选中的值 获取一组radio被选中项的值 var item = $("input[@name=items]:checked").val(); ...

  2. 【Centos7】安装memcached

    1.Linux系统安装memcached,首先要先安装libevent库. 安装libevent库有两种方式 (1)rpm安装 yum install libevent libdeve (2)源码包安 ...

  3. 在 Docker 中使用 flannel - 每天5分钟玩转 Docker 容器技术(60)

    上一节我们安装和配置了 flannel,本节在 Docker 中使用 flannel. 配置 Docker 连接 flannel 编辑 host1 的 Docker 配置文件 /etc/systemd ...

  4. 关于php中的include html文件的问题,为什么html可以在php中执行

    之前在w3shXXl看的教程,上面对include的解释是把指定的文件复制到这条指令执行的地方. 这真是坑到我了..... 在了解mvc的时候,控制器显示视图时需要用include包含html视图文件 ...

  5. 转载>>>Jpgraph图表

    一.开启GD库 Jpgraph需要GD库的支持,所以在调式JpGraph之前,确保GD库已开启,这很重要,不然后面的工作就没办法展开了.GD库在PHP5中是被默认安装的,我们只需开启GD库就可以了. ...

  6. 【前端】react学习阶段总结,学习react、react-router与redux的这些事儿

    前言 借用阮一峰的一句话:真正学会 React 是一个漫长的过程. 这句话在我接触react深入以后,更有感触了.整个react体系都是全新的,最初做简单的应用,仅仅使用react-tools打包js ...

  7. jboss初体验

    本人电脑的java版本是java8,而jboss的版本最多支持到java7.x,导致启动jboss7,在浏览器无法访问localhost:8080. 于是我查找百度,发现jboss8其实就是wildf ...

  8. python 之 计数器(counter)

    Counter是对字典类型的补充,用于追踪值的出现次数. ps:具备字典的所有功能 + 自己的功能 c = Counter('abcdeabcdabcaba') print c 输出:Counter( ...

  9. SSH2项目网上书店系统手把手教学_Struts2+Spring+Hibernate整合开发

    一 序言 鉴于目前J2EE的火热程度,SSH2是每个学生毕业前都必须掌握的一门技术,所以在这里我就使用SSH2技术做一个小型项目,和大家一起学习. SSH2技术的基础概论就不再提了,直接说特点吧. 1 ...

  10. cobbler实现自动安装

    author:JevonWei 版权声明:原创作品 cobbler 配置目录 配置文件目录 /etc/cobbler /etc/cobbler/settings : cobbler 主配置文件 /et ...