AdaBoostRegressor
class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
An AdaBoost regressor.
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.
This class implements the algorithm known as AdaBoost.R2 [2].
Read more in the User Guide.
Parameters: |
base_estimator : object, optional (default=DecisionTreeRegressor)
n_estimators : integer, optional (default=50)
learning_rate : float, optional (default=1.)
loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)
random_state : int, RandomState instance or None, optional (default=None)
|
---|---|
Attributes: |
estimators_ : list of classifiers
estimator_weights_ : array of floats
estimator_errors_ : array of floats
feature_importances_ : array of shape = [n_features]
|
See also
AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor
References
[R123] | Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995. |
[R124] |
|
Methods
fit(X, y[, sample_weight]) | Build a boosted regressor from the training set (X, y). |
get_params([deep]) | Get parameters for this estimator. |
predict(X) | Predict regression value for X. |
score(X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params(**params) | Set the parameters of this estimator. |
staged_predict(X) | Return staged predictions for X. |
staged_score(X, y[, sample_weight]) | Return staged scores for X, y. |
- __init__(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
- feature_importances_
-
- Return the feature importances (the higher, the more important the
- feature).
Returns: feature_importances_ : array, shape = [n_features]
- fit(X, y, sample_weight=None)[source]
-
Build a boosted regressor from the training set (X, y).
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like of shape = [n_samples]
The target values (real numbers).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to 1 / n_samples.
Returns: self : object
Returns self.
- get_params(deep=True)[source]
-
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- predict(X)[source]
-
Predict regression value for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : array of shape = [n_samples]
The predicted regression values.
- score(X, y, sample_weight=None)[source]
-
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
- set_params(**params)[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- staged_predict(X)[source]
-
Return staged predictions for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : generator of array, shape = [n_samples]
The predicted regression values.
- staged_score(X, y, sample_weight=None)[source]
-
Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like, shape = [n_samples]
Labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: z : float
A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.
[1] - Drucker, “Improving Regressors using Boosting Techniques”, 1997.
print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause # importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor # Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng) regr_1.fit(X, y)
regr_2.fit(X, y) # Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X) # Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()
AdaBoostRegressor的更多相关文章
- scikit-learn Adaboost类库使用小结
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- 壁虎书7 Ensemble Learning and Random Forests
if you aggregate the predictions of a group of predictors,you will often get better predictions than ...
- Adaboost总结
一.简介 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类.为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到 ...
- sklearn-adaboost
sklearn中实现了adaboost分类和回归,即AdaBoostClassifier和AdaBoostRegressor, AdaBoostClassifier 实现了两种方法,即 SAMME 和 ...
- 集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
- Scikit-learn使用总结
在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包.在数据量不是过大的情况下,可以解决大部分问题.学习使用scikit-learn的过程中,我自己也在补充着机器学习和 ...
- Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能 ...
- sklearn10-使用总结
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
随机推荐
- git更新失败Probably the path to Git executable is not valid
git更新代码失败 检查setting配置,发现路径配置错误 找对git的安装目录,修改路径后保存即可
- 使用soap实现简单webservice
在网上看到一些关于用soap实现简单webservice的一些知识,简单整理一下希望对大家有所帮助. 可以给大家看一下我的简单实现的列子,Soap,大家可以到Github上自行下载. 首先说一下web ...
- mac与centos下redis的安装与配置
前言 最近在用redis,下面简单写一下mac和centos下redis的安装与配置方法. 安装 mac下面 安装命令:brew intall redis 运行命令:brew services sta ...
- iOS 5个Xcode开发调试技巧
转自Joywii的博客,原文:Four Tips for Debugging in XCode Like a Bro 1.Enable NSZombie Objects(开启僵尸对象) Enab ...
- iOS控制器跳转动画
1 2 3 4 5 6 7 8 9 10 11 12 13 14 MyViewController *myVC = [[MyViewController alloc]init]; //创建动画 C ...
- [array] leetCode-27. Remove Element - Easy
27. Remove Element - Easy descrition Given an array and a value, remove all instances of that value ...
- 关于ubuntu下qt编译显示Cannot connect creator comm socket /tmp/qt_temp.xxx/stub-socket的解决办法
今天在ubuntu下安装了qtcreator,准备测试一下是否能用,果然一测试就出问题了,简单编写后F5编译在gnome-terminal中出现 Cannot connect creator comm ...
- bzoj 4012: [HNOI2015]开店
Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现 ...
- nginx在 window下 自动退出 php-cgi
win32+nginx+php自动挂掉php-cgi.exe RunHiddenConsole E:/wnmp/php5/php-cgi.exe -b 127.0.0.1:9000 -c &qu ...
- MySQL数据库入门(建库和建表)--陈远波
建库.建表 1.建库 (1)SQL语句命令建库: Create database数据库名称 (该方法创建的数据库没有设置编码乱码) 1 2 3 4 5 -- 创建数据库时,设置数据库的编码方式 -- ...