AdaBoostRegressor
class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
An AdaBoost regressor.
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.
This class implements the algorithm known as AdaBoost.R2 [2].
Read more in the User Guide.
Parameters: |
base_estimator : object, optional (default=DecisionTreeRegressor)
n_estimators : integer, optional (default=50)
learning_rate : float, optional (default=1.)
loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)
random_state : int, RandomState instance or None, optional (default=None)
|
---|---|
Attributes: |
estimators_ : list of classifiers
estimator_weights_ : array of floats
estimator_errors_ : array of floats
feature_importances_ : array of shape = [n_features]
|
See also
AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor
References
[R123] | Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995. |
[R124] |
|
Methods
fit(X, y[, sample_weight]) | Build a boosted regressor from the training set (X, y). |
get_params([deep]) | Get parameters for this estimator. |
predict(X) | Predict regression value for X. |
score(X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params(**params) | Set the parameters of this estimator. |
staged_predict(X) | Return staged predictions for X. |
staged_score(X, y[, sample_weight]) | Return staged scores for X, y. |
- __init__(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
- feature_importances_
-
- Return the feature importances (the higher, the more important the
- feature).
Returns: feature_importances_ : array, shape = [n_features]
- fit(X, y, sample_weight=None)[source]
-
Build a boosted regressor from the training set (X, y).
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like of shape = [n_samples]
The target values (real numbers).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to 1 / n_samples.
Returns: self : object
Returns self.
- get_params(deep=True)[source]
-
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- predict(X)[source]
-
Predict regression value for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : array of shape = [n_samples]
The predicted regression values.
- score(X, y, sample_weight=None)[source]
-
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
- set_params(**params)[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- staged_predict(X)[source]
-
Return staged predictions for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : generator of array, shape = [n_samples]
The predicted regression values.
- staged_score(X, y, sample_weight=None)[source]
-
Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like, shape = [n_samples]
Labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: z : float
A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.
[1] - Drucker, “Improving Regressors using Boosting Techniques”, 1997.
print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause # importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor # Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng) regr_1.fit(X, y)
regr_2.fit(X, y) # Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X) # Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()
AdaBoostRegressor的更多相关文章
- scikit-learn Adaboost类库使用小结
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- 壁虎书7 Ensemble Learning and Random Forests
if you aggregate the predictions of a group of predictors,you will often get better predictions than ...
- Adaboost总结
一.简介 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类.为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到 ...
- sklearn-adaboost
sklearn中实现了adaboost分类和回归,即AdaBoostClassifier和AdaBoostRegressor, AdaBoostClassifier 实现了两种方法,即 SAMME 和 ...
- 集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
- Scikit-learn使用总结
在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包.在数据量不是过大的情况下,可以解决大部分问题.学习使用scikit-learn的过程中,我自己也在补充着机器学习和 ...
- Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能 ...
- sklearn10-使用总结
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
随机推荐
- 英式英语VS美式英语
- IX-Protected Dataplane Operating System解读
一.概述 商业操作系统在应用程序每秒钟需要数百万次操作时才能保持高吞吐量和低(尾)延迟,对于最慢的请求只需几百微秒.通常认为对于高性能网络(小信息的高包率.低延迟)的构建,最好都是在内核之外构建用户态 ...
- JS判断终端
//判断手机终端 if(navigator.userAgent.match(/(iPhone|iPod|Android|ios)/i)) { window.location.href = 'mobil ...
- C#基础在using中创建对象
在using中创建的对象的类必须是实现了IDispose接口的类,示例代码如下: static void Main(string[] args) { Method(); Console.WriteLi ...
- CSS3关于过渡效果的问题
首先trasition:transform只是单单表示后面只要有含有的tranform的所有属性可以参与动画,而trasition:all表示后面所有动画属性都可以参动画,当父容器有relative时 ...
- 使用VSCode创建Asp.Net Core
前言 .Net Core 2.0已经发布几个月了,惭愧!身为一个开发人员现在才开始接触,有人说有VS这一宇宙第一IDE在,为啥还要用VSCode,为啥?因为我们是程序猿啊!我们是攻城狮啊!我们爱折腾啊 ...
- xamarin android 在代码中如何设置文本颜色
xamarin android 在代码中如何设置文本颜色 TextView v = FindViewById<TextView>(Android.Resource.Id.Message); ...
- 搭建eclipse+tomcat开发环境
JDK 1.6 Eclipse IDE For JEE Version Tomcat 6.0 tomcatPluginV33 //eclipse平台上的插件,但它并不是tomcat本身,需要安装独立 ...
- 《MYSQL》----字符串的复杂函数,检索的七-天-排-重
接到了一个新的需求,拿到需求的时候瞬间有点头大,因为实在是有些棘手. 我们这个系统本身是个接口系统,总接口数大概在200个左右.外部会有很多用户在 不同的时间拿着不同参数去调我们的这些接口,用户的调集 ...
- Android 内存暴减的秘密?!
作者:杨超,腾讯移动客户端开发 工程师 商业转载请联系腾讯WeTest获得授权,非商业转载请注明出处. WeTest 导读 在我这样减少了26.5M Java内存! 一文中内存优化一期已经告一段落, ...