压缩感知测量矩阵之有限等距性质(Restricted Isometry Property,RIP)

》定义
   不同的文献对RIP定义的表达不同,详细可参考博客中的定义,在这里选取一种自己比较能理解的定义,如下所示:
  

!!!重点,RIP是对哪一个矩阵的约束?
   在没参考这篇博客之前,阅读了师兄的论文,之前一直以为是对观测矩阵的约束,然而事实是RIP是对传感矩阵的约束,传感矩阵即观测矩阵与表示矩阵的乘积所构成的矩阵,又称为字典。
   压缩观测y=Φx,其中y为观测所得向量M×1,x为原信号N×1(M<<N)。x一般不是稀疏的,但在某个变换域Ψ是稀疏的,即x=Ψθ,其中θ为K稀疏的,即θ只有K个非零项。此时y=ΦΨθ,令A=ΦΨ,则y=

(1) y为观测所得向量,大小为M×1

(2) x为原信号,大小为N×1

(3) θ为K稀疏的,是信号在x在某变换域的稀疏表示

(4) Φ称为观测矩阵、测量矩阵、测量基,大小为M×N

(5) Ψ称为变换矩阵、变换基、稀疏矩阵、稀疏基、正交基字典矩阵,大小为N×N

(6) A称为测度矩阵、传感矩阵、CS信息算子,大小为M×N

上式中,一般有K<<M<<N,后面三个矩阵各个文献的叫法不一,以后我将Φ称为测量矩阵、将Ψ称为稀疏矩阵、将A称为传感矩阵

   实际上RIP是针对传感矩阵A。从定义中可知x是稀疏的,信号x一般时候都不是稀疏的,所以定义中RIP针对的矩阵不是y=Φx中的Φ,而是y=中的A,定义中的x实际上是这里的θ
 

》如何理解RIP性质?
   1.能量说
   向量的2范数的平方就是信号的能量,换成常见的公式:
   这个公式可以数字信号处理教材中讲信号分类的章节找到,实际上将信号看成是电压信号或电流信号,这是在单位电阻上的能量(即u2t/R或i2t/R,R=1Ω,再离散即可)。
   这里将中文定义一中的RIP性质的不等式按刚才规定好的一套符号重新写出:
   这里的||Aθ||22实际上是||y||22,即输出信号的能量, ||θ||22即输入信号的能量(稀疏变换x=Ψθ为正交变换,而正交变换保持能量不变,即信号理论中的Parseval定理)。
   RIP其实可以看成刻画一个矩阵和标准正交阵的相似程度。其对于向量做变化后的 L2 能量(范数平方)相较于原向量的能量的变化不超过RIP。
   其实取极限当δ=0时(RIP要求0<δ<1),RIP的不等式实际上表示的是观测所得向量y的能量等于信号x的能量,在线性代数中所讲的正交变换也具有这种性质,也称为等距变换(把信号将为二维或三维时2范数的平方可形象的理解为到原点的距离),当然这里的变换因为传感矩阵A不可能是正交矩阵(不是方阵),但当极限δ=0时也能保持能量相等(也可以称为等距吧),而RIP要求0<δ<1,所以不可能等距,所以就称为有限等距性质吧。
 
   2.唯一映射说
   RIP性质(有限等距性质)保证了观测矩阵不会把两个不同的K稀疏信号映射到同一个集合中(保证原空间到稀疏空间的一一映射关系),要求从观测矩阵中抽取的每M个列向量构成的矩阵是非奇异的。
   文献[李树涛,魏丹.压缩传感综述[J]. 自动化学报,2009,35(11):1369-1377.]中提到:
    “由于稀疏矩阵是固定的,要使得传感矩阵满足约束等距条件,可以通过设计测量矩阵解决”,RIP是针对传感矩阵的,但为什么我们确来研究测量矩阵呢?我想这就是答案了吧。这里还提到了“2K列都不相关”,其实这很好理解:如果矩阵有2K列线性相关,则对于某一个2K稀疏的信号必然会有2K=0,又因为一个2K稀疏的信号可以写成两个K稀疏的信号相减(把2K稀疏信号的2K个非零项分成两部分,每部分分别包含K个非零项,其余部分填零长度与原2K稀疏信号保持不变,即得到了两个K稀疏信号,其中的一个K稀疏信号中的K个非零项乘负一,另一部分减这一部分必然等于2K稀疏信号),因此有A(θK1θK2)=0,即K1=K2,也就是说对于两个不同的K稀疏信号θK1θK2,压缩观测后得到了同一个y,即不能保证唯一映射,所以矩阵不能有2K列线性相关,否则将不能保证唯一映射
 
   矩阵满足2K阶RIP保证了能够把任意一个K稀疏信号θK映射为唯一的y,也就是说要想通过压缩观测y恢复K稀疏信号θK,必须保证传感矩阵满足2K阶RIP满足2K阶RIP的矩阵任意2K列线性无关
 

有限等距性质RIP的更多相关文章

  1. 浅谈压缩感知(十七):测量矩阵之有限等距常数RIC的计算

    有限等距常数(RestrictedIsometry Constant, RIC)是与有限等距性质(Restricted IsometryProperty, RIP)紧密结合在一起的一个参数. 一.RI ...

  2. 压缩感知(CS)

    总结一下最近看的压缩感知(Compressed Sensiong)的内容. 它是在采样过程中完成了数据压缩的过程. 一. 将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程.问题在于,应该 ...

  3. 浅谈压缩感知(十六):感知矩阵之RIP

    在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP). 注意: ...

  4. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  5. 基于Hash算法的高维数据的最近邻检索

    一.摘要 最紧邻检索:一种树基于树结构,一种是基于hash a.随机投影算法,需要产生很多哈希表,才能提高性能. b.基于学习的哈希算法在哈希编码较短时候性能不错,但是增加编码长度并不能显著提高性能. ...

  6. TCP/IP入门(2) --网络层

    /** 本篇博客由 126(127不可用) 2^24 -2 B 2^14 -1 128.1 191.255 2^16 -2 C 2^21 -1 192.0.1 223.255.255 2^8 -2 D ...

  7. 动态选路、RIP协议&&OSPF协议详解

    动态选路.RIP协议&&OSPF协议详解 概念 当相邻路由器之间进行通信,以告知对方每个路由器当前所连接的网络,这时就出现了动态选路.路由器之间必须采用选路协议进行通信,这样的选路协议 ...

  8. TCP/IP笔记 二.网络层(2)——ICMP,RIP,OSPF,BGP

    1. ICMP ICMP (Internet Control Message Protocol) 作用:提高 IP 数据报交付成功的机会. 1.1 特点 ICMP 允许主机或路由器报告差错情况和提供有 ...

  9. 一类SG函数递推性质的深入分析——2018ACM陕西邀请赛H题

    题目描述 定义一种有根二叉树\(T(n)\)如下: (1)\(T(1)\)是一条长度为\(p\)的链: (2)\(T(2)\)是一条长度为\(q\)的链: (3)\(T(i)\)是一棵二叉树,它的左子 ...

随机推荐

  1. Java 核心内容相关面试题【3】

    目录 面向对象编程(OOP) 常见的Java问题 Java线程 Java集合类 垃圾收集器 异常处理 Java小应用程序(Applet) Swing JDBC 远程方法调用(RMI) Servlet ...

  2. Python进阶---面向对象第三弹(进阶篇)

    Python对象中一些方法 一.__str__ class Teacher: def __init__(self,name,age): self.name=name self.age=age self ...

  3. Java8 方式解决Stream流转其他数组

    Java8 方式解决Stream流转其他数组 一. 题记:原来的List转数组用的是如下方式: example private static void listToStringArray(List l ...

  4. 电商SEO

    大家都知道网站有SEO,电商也有SEO,今天陈晨就带大家来讲讲电商SEO的思路以及电商最重要的选品规划! 1. 选品是核心 2. 挖掘卖点是你走向成功必经之路 3. 产品定价策略---人群画像 4. ...

  5. 2)C语言的基本知识(C自考学习)

    字符集 在C语言程序中允许出现的所有基本字符的组合称为C语言的字符集.C语言的字符集就是ASCII字符集.主要包含一下几类: 1)大小写英文字母A~Z,a~z(52个) 2)数字0-9(10个) 3) ...

  6. Linux笔记(固定USB摄像头硬件端口,绑定前后置摄像头)

    在Android的系统会有前置摄像头和后置摄像头的定义,摄像头分为SOC类型的摄像头和USB这一类的摄像头,接下要分析就是USB摄像头这一类 . 一般在android或者linux系统中分析一个模块, ...

  7. 【Java】java 中的泛型通配符——从“偷偷地”地改变集合元素说起

    一直没注意这方面的内容,想来这也算是基础了,就写了这个笔记. 首先java的通配符共有三种----先别紧张,现在只是粗略的过一下,看不看其实无所谓 类型 介绍 <?> 无限定通配符,等价于 ...

  8. 解决阿里云服务器3306端口无法访问的问题(windows server 2008r2)

    3306端口一般是指mysql数据的默认端口.郁闷了几天的问题,远程无法连接服务器上的mysql服务.今天终于得到彻底解决. 首先,你要确保在服务器上安装好Mysql,并能本地启动.修改密码(如不知道 ...

  9. Cannot load browser "PhantomJS": it is not registered! Perhaps you are missing some plugin? 测试安装遇到的BUG

    安装了半天phantomjs就是安装不好,后面想了个死办法,http://phantomjs.org/download.html这个网址下先去下载好 phantomjs-2.1.1-windows.z ...

  10. SubTool 电影字幕下载程序

    项目地址 https://github.com/backtracker/SubTool 程序说明 作为一个高清电影爱好者,找字幕的痛苦懂的人自然会懂.我在网上找了很久,并没有找到好用的字幕下载程序,于 ...