压缩感知测量矩阵之有限等距性质(Restricted Isometry Property,RIP)

》定义
   不同的文献对RIP定义的表达不同,详细可参考博客中的定义,在这里选取一种自己比较能理解的定义,如下所示:
  

!!!重点,RIP是对哪一个矩阵的约束?
   在没参考这篇博客之前,阅读了师兄的论文,之前一直以为是对观测矩阵的约束,然而事实是RIP是对传感矩阵的约束,传感矩阵即观测矩阵与表示矩阵的乘积所构成的矩阵,又称为字典。
   压缩观测y=Φx,其中y为观测所得向量M×1,x为原信号N×1(M<<N)。x一般不是稀疏的,但在某个变换域Ψ是稀疏的,即x=Ψθ,其中θ为K稀疏的,即θ只有K个非零项。此时y=ΦΨθ,令A=ΦΨ,则y=

(1) y为观测所得向量,大小为M×1

(2) x为原信号,大小为N×1

(3) θ为K稀疏的,是信号在x在某变换域的稀疏表示

(4) Φ称为观测矩阵、测量矩阵、测量基,大小为M×N

(5) Ψ称为变换矩阵、变换基、稀疏矩阵、稀疏基、正交基字典矩阵,大小为N×N

(6) A称为测度矩阵、传感矩阵、CS信息算子,大小为M×N

上式中,一般有K<<M<<N,后面三个矩阵各个文献的叫法不一,以后我将Φ称为测量矩阵、将Ψ称为稀疏矩阵、将A称为传感矩阵

   实际上RIP是针对传感矩阵A。从定义中可知x是稀疏的,信号x一般时候都不是稀疏的,所以定义中RIP针对的矩阵不是y=Φx中的Φ,而是y=中的A,定义中的x实际上是这里的θ
 

》如何理解RIP性质?
   1.能量说
   向量的2范数的平方就是信号的能量,换成常见的公式:
   这个公式可以数字信号处理教材中讲信号分类的章节找到,实际上将信号看成是电压信号或电流信号,这是在单位电阻上的能量(即u2t/R或i2t/R,R=1Ω,再离散即可)。
   这里将中文定义一中的RIP性质的不等式按刚才规定好的一套符号重新写出:
   这里的||Aθ||22实际上是||y||22,即输出信号的能量, ||θ||22即输入信号的能量(稀疏变换x=Ψθ为正交变换,而正交变换保持能量不变,即信号理论中的Parseval定理)。
   RIP其实可以看成刻画一个矩阵和标准正交阵的相似程度。其对于向量做变化后的 L2 能量(范数平方)相较于原向量的能量的变化不超过RIP。
   其实取极限当δ=0时(RIP要求0<δ<1),RIP的不等式实际上表示的是观测所得向量y的能量等于信号x的能量,在线性代数中所讲的正交变换也具有这种性质,也称为等距变换(把信号将为二维或三维时2范数的平方可形象的理解为到原点的距离),当然这里的变换因为传感矩阵A不可能是正交矩阵(不是方阵),但当极限δ=0时也能保持能量相等(也可以称为等距吧),而RIP要求0<δ<1,所以不可能等距,所以就称为有限等距性质吧。
 
   2.唯一映射说
   RIP性质(有限等距性质)保证了观测矩阵不会把两个不同的K稀疏信号映射到同一个集合中(保证原空间到稀疏空间的一一映射关系),要求从观测矩阵中抽取的每M个列向量构成的矩阵是非奇异的。
   文献[李树涛,魏丹.压缩传感综述[J]. 自动化学报,2009,35(11):1369-1377.]中提到:
    “由于稀疏矩阵是固定的,要使得传感矩阵满足约束等距条件,可以通过设计测量矩阵解决”,RIP是针对传感矩阵的,但为什么我们确来研究测量矩阵呢?我想这就是答案了吧。这里还提到了“2K列都不相关”,其实这很好理解:如果矩阵有2K列线性相关,则对于某一个2K稀疏的信号必然会有2K=0,又因为一个2K稀疏的信号可以写成两个K稀疏的信号相减(把2K稀疏信号的2K个非零项分成两部分,每部分分别包含K个非零项,其余部分填零长度与原2K稀疏信号保持不变,即得到了两个K稀疏信号,其中的一个K稀疏信号中的K个非零项乘负一,另一部分减这一部分必然等于2K稀疏信号),因此有A(θK1θK2)=0,即K1=K2,也就是说对于两个不同的K稀疏信号θK1θK2,压缩观测后得到了同一个y,即不能保证唯一映射,所以矩阵不能有2K列线性相关,否则将不能保证唯一映射
 
   矩阵满足2K阶RIP保证了能够把任意一个K稀疏信号θK映射为唯一的y,也就是说要想通过压缩观测y恢复K稀疏信号θK,必须保证传感矩阵满足2K阶RIP满足2K阶RIP的矩阵任意2K列线性无关
 

有限等距性质RIP的更多相关文章

  1. 浅谈压缩感知(十七):测量矩阵之有限等距常数RIC的计算

    有限等距常数(RestrictedIsometry Constant, RIC)是与有限等距性质(Restricted IsometryProperty, RIP)紧密结合在一起的一个参数. 一.RI ...

  2. 压缩感知(CS)

    总结一下最近看的压缩感知(Compressed Sensiong)的内容. 它是在采样过程中完成了数据压缩的过程. 一. 将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程.问题在于,应该 ...

  3. 浅谈压缩感知(十六):感知矩阵之RIP

    在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP). 注意: ...

  4. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  5. 基于Hash算法的高维数据的最近邻检索

    一.摘要 最紧邻检索:一种树基于树结构,一种是基于hash a.随机投影算法,需要产生很多哈希表,才能提高性能. b.基于学习的哈希算法在哈希编码较短时候性能不错,但是增加编码长度并不能显著提高性能. ...

  6. TCP/IP入门(2) --网络层

    /** 本篇博客由 126(127不可用) 2^24 -2 B 2^14 -1 128.1 191.255 2^16 -2 C 2^21 -1 192.0.1 223.255.255 2^8 -2 D ...

  7. 动态选路、RIP协议&&OSPF协议详解

    动态选路.RIP协议&&OSPF协议详解 概念 当相邻路由器之间进行通信,以告知对方每个路由器当前所连接的网络,这时就出现了动态选路.路由器之间必须采用选路协议进行通信,这样的选路协议 ...

  8. TCP/IP笔记 二.网络层(2)——ICMP,RIP,OSPF,BGP

    1. ICMP ICMP (Internet Control Message Protocol) 作用:提高 IP 数据报交付成功的机会. 1.1 特点 ICMP 允许主机或路由器报告差错情况和提供有 ...

  9. 一类SG函数递推性质的深入分析——2018ACM陕西邀请赛H题

    题目描述 定义一种有根二叉树\(T(n)\)如下: (1)\(T(1)\)是一条长度为\(p\)的链: (2)\(T(2)\)是一条长度为\(q\)的链: (3)\(T(i)\)是一棵二叉树,它的左子 ...

随机推荐

  1. centos7安装python3和Django后,ModuleNotFoundError: No module named '_sqlite3'

    1.准备安装环境 yum groupinstall 'Development Tools' yum install zlib-devel bzip2-devel openssl-devel ncurs ...

  2. jQuery+ajax实现局部刷新

    在项目中,经常会用到ajax,比如实现局部刷新,比如需要前后端交互等,这里呢分享局部刷新的两种方法,主要用的是ajax里面的.load(),其他高级方法的使用以后再做详细笔记. 第一种: 当某几个页面 ...

  3. HTML基础--position 绝对定位 相对定位 锚点链接

    position 定位属性,检索对象的定位方式 一.语法:position:static /absolute/relative/fixed 取值: 1.static:默认值,无特殊定位,对象遵循HTM ...

  4. 使用flex

    Flex如何处理二义性模式: 1.词法分析器匹配输入时匹配尽可能多的字符串 2.如果两个模式都可以匹配的话,匹配在程序中更早出现的模式 上下文相关的记号 flex提供起始状态(start state) ...

  5. 熊掌号:"搜索+信息流"双引擎与"百家号+熊掌号"双品牌内容平台

    一. 熊掌号是什么?熊掌号简单来说,就是"搜索 + 信息流"双引擎与"百家号 + 熊掌号"双品牌内容平台,上线了,对站长还是企业,都是一件好事.只要写出优质的原 ...

  6. struts2的简单执行过程

    struts2是最近刚学的一个框架,想通过写篇文章来加深下印象,这也是本篇博文产生的由来,下面进入正题 Struts2本身是一个挺简单的框架,我们通过写一个登陆的过程来具体描述下其执行过程 1.首先我 ...

  7. PowerShell 操作 Azure Blob Storage

    本文假设已经存在了一个 Azure Storage Account,需要进行文件的上传,下载,复制,删除等操作.为了方便查看 PowerShell 代码执行的结果,本文使用了 MS 发布的一个 Azu ...

  8. ssh 免密钥失败原因

    1.权限问题 本地端 ssh chmod 777 ~/.ssh sudo chmod 777 /home/当前用户 远程端 .ssh目录下的authorized_keys sudo chmod 777 ...

  9. kali 2017更新源

    #阿里云deb http://mirrors.aliyun.com/kali kali-rolling main non-free contribdeb-src http://mirrors.aliy ...

  10. CentOS7 安装sentry(最新)

      Sentry 是一款基于 Django实现的错误日志收集和聚合的平台,它是 Python 实现的,但是其日志监控功能却不局限于python,对诸如 Node.js, php,ruby, C#,ja ...