题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1205

题目解析:开始没看清题,WA了一发,以为只要最大的次大的差2就是NO,后来仔细看过之后才发现,,,,这题要用隔板法来求解

1.把某种糖果看做隔板,如果某种糖果有n个,那么就有n+1块区域,至少需要n-1块其他种糖果才能使得所有隔板不挨在一块..也就是说能吃完这种糖果.至少需要其他种类糖果n-1块..(鸽巢原理)

2.数量最多的糖果(隔板)可以构造最多的空间,如果这种糖果有maxn个....那么需要maxn-1个其他种糖果.对于某种数量少于maxn的糖果来说,可以在原本数量最多的糖果构造的隔板上"加厚"原有的隔板...,那么这"某种糖果"就销声匿迹了.....

考虑极端情况.如果某种糖果无法在这maxn+1的空间内构造出符合条件的序列,那么这种糖果至少要有maxn+1+1个(考虑只有两种糖果的情况)...(鸽巢原理)...但是这与数量最多的那种糖果只有maxn个矛盾.....(maxn+1+1>maxn 这不等式不难理解吧....).

但还是WA了,,,,,最后发现,,,,,要用long long,注意数据范围i,修改之后终于AC了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=+;
long long a[maxn];
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
long long sum=;
for(int i=;i<n;i++)
scanf("%lld",&a[i]);
sort(a,a+n);
for(int i=;i<n-;i++)
sum+=a[i];
if(a[n-]->sum)
puts("No");
else
puts("Yes");
}
return ;
}

鸽笼原理的运用HDU1205的更多相关文章

  1. HDU 5762 Teacher Bo (鸽笼原理) 2016杭电多校联合第三场

    题目:传送门. 题意:平面上有n个点,问是否存在四个点 (A,B,C,D)(A<B,C<D,A≠CorB≠D)使得AB的横纵坐标差的绝对值的和等于CD的横纵坐标差的绝对值的和,n<1 ...

  2. Gym 100851G Generators (vector+鸽笼原理)

    Problem G. Generators Input file: generators.in Output file: generators.outLittle Roman is studying li ...

  3. POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)

    描述 http://poj.org/problem?id=1065 木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次). Wo ...

  4. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  5. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  6. UVA 10620 - A Flea on a Chessboard(鸽笼原理)

    UVA 10620 - A Flea on a Chessboard 题目链接 题意:给定一个跳蚤位置和移动方向.如今在一个国际象棋棋盘上,左下角为黑格,一个格子为s*s,推断是否能移动到白格子.问要 ...

  7. CodeChef February Challenge 2018 Points Inside A Polygon (鸽笼原理)

    题目链接  Points Inside A Polygon 题意  给定一个$n$个点的凸多边形,求出$[ \frac{n}{10}]\ $个凸多边形内的整点. 把$n$个点分成$4$类: 横坐标奇, ...

  8. 1393 0和1相等串 鸽笼原理 || 化简dp公式

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1393 正解一眼看出来的应该是鸽笼原理.记录每个位置的前缀和,就是dp[i ...

  9. Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)

    To become the king of Codeforces, Kuroni has to solve the following problem. He is given n numbers a ...

随机推荐

  1. HTML之组件margin、padding

    1.  HTML之组件可以通过CSS里的width height进行大小控制 2.HTML之组件可以通过CSS里的margin.padding进行组件和组件间的间距 margin/padding:(u ...

  2. Monad / Functor / Applicative 浅析

    前言 Swift 其实比 Objective-C 复杂很多,相对于出生于上世纪 80 年代的 Objective-C 来说,Swift 融入了大量新特性.这也使得我们学习掌握这门语言变得相对来说更加困 ...

  3. IE6 下 输入类型表单控件背景问题

    .box input{background:url(img/1.jpg) fixed} <body> <div class="box"> <input ...

  4. HDU 3594 Cactus (强连通分量 + 一个边只能在一个环里)

    题意:判断题目中给出的图是否符合两个条件.1 这图只有一个强连通分量 2 一条边只能出现在一个环里. 思路:条件1的满足只需要tarjan算法正常求强连通分量即可,关键是第二个条件,我们把对边的判断转 ...

  5. StringWriter/PrintWriter在Java输出异常信息中的作用

    闲来无事,看看JUnit的源代码.刚刚开始看就发现一段有趣的代码: public String trace() { StringWriter stringWriter = new StringWrit ...

  6. rabbitmq用于分布式系统

    上文介绍了RabbitMQ在linux下的安装,这里就简单的介绍一下基于RabbitMQ的开发.RabbitMQ已经提供了一大坨材料. Java – http://www.RabbitMQ.com/j ...

  7. 简单实现contentOS下开机自动启动tomcat

    看过网上很多写tomcat开机自启动的例子,很多都是写了一个比较复杂的脚步.找到一个比较简单的. 首先编辑 vi /etc/rc.d/rc.local 在尾部加入 export JDK_HOME=/u ...

  8. If only it could be all the same like we first me

    为什么 你当时对我好 Why? You nice to me at that time. 又为什么 现在变得冷淡了 Why? Now you give a cold shoulder to me. 我 ...

  9. JS清除dropdownlist绑定的项,并添加新项

    <script type="text/javascript"> /*删除项*/ document.getElementById('KeyList').options.l ...

  10. FusionCharts导出图表常见问题(FAQ)汇总---FusionCharts常见问题大全

    在前面几篇文章中,我们介绍了FusionCharts生成Flash图表常见问题FAQ以及使用中的一些常见报错及调试/解决方法.本文继续介绍FusionCharts导出图表时的一些常见问题(FAQ). ...