主要介绍用DataJoin类来链接多数据源,先看一下例子,假设二个数据源customs和orders

customer ID       Name      PhomeNumber

1                        赵一        025-5455-566

2                        钱二        025-4587-565

3                        孙三        021-5845-5875

客户的订单号:

Customer ID     order ID     Price    Data

2                          1               93       2008-01-08

3                          2               43       2012-01-21

1                          3               43       2012-05-12

2                          4               32       2012-5-14

问题:现在要生成订单

customer ID    name    PhomeNumber     Price     Data

2                      钱二     025-4587-565        93          2008-01-08

上面是一个例子,下面介绍一下hadoop中DataJoin类具体的做法。

首先,需要为不同数据源下的每个数据定义一个数据标签,这一点不难理解,就是标记数据的出处。

其次,需要为每个待链接的数据记录确定一个链接主键,这一点不难理解。DataJoin类库分别在map阶段和Reduce阶段提供一个处理框架,尽可能帮助程序员完成一些处理的工作,仅仅留下一些必须工作,由程序完成。

Map阶段

DataJoin类库里有一个抽象基类DataJoinMapperBase,该基类实现了map方法,该方法为对每个数据源下的文本的记录生成一 个带表见的数据记录对象。但是程序必须指定它是来自于哪个数据源,即Tag,还要指定它的主键是什么即GroupKey。如果指定了Tag和 GroupKey,那么map将会生成一下的记录,customer表为例

customers         1                赵一        025-5455-566;       customers         2                钱二        025-4587-565;

Map过程中Tag和GroupKey都是程序员给定,所以要肯定要就有接口供程序员去实现,DataJoinMapperBase实现下面3个接口。

abstract Text gernerateInputTag(String inuptFile), 看方法名就知道是设置Tag。

abstract Text generateGroupKey(TaggedMapOutput lineRecord), 该方法是设置GroupKey,其中,lineRecord是数据源中的一行数据,该方法可以在这一行数据上设置任意的GroupKey为主键。

abstract TaggedMapOutput generateMapOutput(object value), 该抽象方法用于把数据源中的原始数据记录包装成一个带标签的数据源。TaggedMapOutputs是一行记录的数据类型。代码如下:

import org.apache.hadoop.contrib.utils.join.*;
import org.apache.hadoop.contrib.utils.join.TaggedMapOutput;
import org.apache.hadoop.io.Text; public class MapClass extends DataJoinMapperBase{ @Override
protected Text generateGroupKey(TaggedMapOutput arg0) {
String line = ((Text)arg0.getData()).toString();
String[] tokens = line.split(",");
String groupKey = tokens[0];
return new Text(groupKey);
} @Override
protected Text generateInputTag(String arg0) { String dataSource = arg0.split("-")[0];
return new Text(dataSource);
} @Override
protected TaggedMapOutput generateTaggedMapOutput(Object arg0) {
TaggedWritable tw = new TaggedWritable((Text)arg0);
tw.setTag(this.inputTag);
return tw;
}
}
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.contrib.utils.join.TaggedMapOutput;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable; public class TaggedWritable extends TaggedMapOutput{ private Writable data;
public TaggedWritable(Writable data) {
this.tag = new Text("");
this.data = data;
} @Override
public Writable getData() {
return data;
} @Override
public void readFields(DataInput arg0) throws IOException {
this.tag.readFields(arg0);
this.data.readFields(arg0);
} @Override
public void write(DataOutput arg0) throws IOException {
this.tag.write(arg0);
this.data.write(arg0);
}
}

每个记录的数据源标签可以由generateInputTag()产生,通过setTag()方法设置记录的Tag。

note:1.该记录不是关系数据库,是文本文件,2. TaggedMapOutput 在import org.apache.hadoop.contrib.utils.join.*头文件中,有的时候在eclipse下,每个这个头文件,这时   只要找到你的hadoop的目录下contrib/datajoin文件加,把jar文件导入eclipse中即可。

Reduce 阶段

DataJoinReduceBase中已经实现reduce()方法,具有同一GroupKey的数据分到同一Reduce中,通过reduce的方法将对来自不同的数据源和据用相同的GroupKey做一次叉积组合。这个比较难懂,举个例子:

customers         2                钱二        025-4587-565;

orders      2                1               93       2008-01-08;

orders 2           4               32       2012-5-14

按照map()结果的数据,就是下表给出的结果(3个记录),他们都有一个共同的GroupKey,带来自于二个数据源,所以叉积的结果为

customers         2                钱二        025-4587-565

orders      2                1               93       2008-01-08

customers         2                钱二        025-4587-565

orders 2           4               32       2012-5-14

如果Reduce阶段看懂了,基本上这个就搞定了,Reduce是系统做的,不需要用户重载,接下来的工作就是要实现一个combine()函数,它的作用是将每个叉积合并起来,形成订单的格式。

代码如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.contrib.utils.join.DataJoinReducerBase;
import org.apache.hadoop.contrib.utils.join.TaggedMapOutput;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class ReduceClass extends DataJoinReducerBase{ @Override
protected TaggedMapOutput combine(Object[] tags, Object[] values) {
if(tags.length<2)return null;
StringBuffer joinData = new StringBuffer();
int count=0; for(Object value: values){
joinData.append(",");
TaggedWritable tw = (TaggedWritable)value;
String recordLine = ((Text)tw.getData()).toString();
String[] tokens = recordLine.split(",",2);
if(count==0) joinData.append(tokens[0]);
joinData.append(tokens[1]);
} TaggedWritable rtv = new TaggedWritable(new Text(new String(joinData)));
rtv.setTag((Text)tags[0]);
return rtv;
} public static void main(String[] args){ Configuration conf = new Configuration();
JobConf job = new JobConf(conf, ReduceClass.class); Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
job.setJobName("DataJoin");
job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class); job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(TaggedWritable.class);
job.set("mapred.textoutputformat.separator", ",");
JobClient.runJob(job); }
}

作者:BIGBIGBOAT/Liqizhou

MapReduce,DataJoin,链接多数据源的更多相关文章

  1. SQLServer——SQLServer链接外部数据源

    学习链接:https://www.cnblogs.com/licin/p/6244169.html 一.新建ODBC数据源 1.打开控制面板→管理工具→ODBC数据源→系统DSN 2.添加新系统数据源 ...

  2. C++链接ODBC数据源:VS2013,Access

    参考资料:1.http://wenku.baidu.com/view/a92d1a812cc58bd63186bd8d.html 2.http://blog.sina.com.cn/s/blog_68 ...

  3. eclipse中tomcat配置JNDI链接Oracle数据源例子

    最近换到新公司,第一次接触JNDI方式连接数据库. 一开始怎么找也没找到数据库地址在哪里配置的,后面跟代码发现spring中初始化dataSource是通过这个类JndiObjectFactoryBe ...

  4. 谷歌三大核心技术(二)Google MapReduce中文版

    谷歌三大核心技术(二)Google MapReduce中文版  Google MapReduce中文版     译者: alex   摘要 MapReduce是一个编程模型,也是一个处理和生成超大数据 ...

  5. 【转】谷歌三大核心技术(二)Google MapReduce中文版

      Google MapReduce中文版     译者: alex   摘要 MapReduce 是一个编程模型,也是一个处理和生成超大数据集的算法模型的相关实现.用户首先创建一个Map函数处理一个 ...

  6. Google MapReduce中文版

    英文原文链接: Google Map Reduce 译文原文链接: Google MapReduce中文版 Google MapReduce中文版 译者: alex 摘要 MapReduce是一个编程 ...

  7. Amazon EMR(Elastic MapReduce):亚马逊Hadoop托管服务运行架构&Hadoop云服务之战:微软vs.亚马逊

    http://s3tools.org/s3cmd Amazon Elastic MapReduce (Amazon EMR)简介 Amazon Elastic MapReduce (Amazon EM ...

  8. MapReduce On Yarn的配置详解和日常维护

    MapReduce On Yarn的配置详解和日常维护 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce运维概述 MapReduce on YARN的运维主要是 ...

  9. HADOOP之MAPREDUCE程序应用二

    摘要:MapReduce程序进行单词计数. 关键词:MapReduce程序  单词计数 数据源:人工构造英文文档file1.txt,file2.txt. file1.txt 内容 Hello   Ha ...

随机推荐

  1. HTTP状态码(HTTPStatusCode)

    HTTP状态码(HTTPStatusCode) 祓焘铺 布稍酡 盛坭馆 距熏屿砥 女装出来扔了套到床上然后自己穿了套 跎徨鼻卩 权术埭 悌颞 蔹咽诹ㄒ 椿酣漂作 钱是小事关键是没有老师耸了 ...

  2. C#拾遗(一、基本类型)

    1. C#是一种块结构语言,用花括号{}分块,但是用#region和#endregion来定义可以展开和折叠的代码区域 #region 这是引用区 using System; ...... #endr ...

  3. android studio的lib和jniLibs

    在android studio 中添加jar和so时,将jar文件直接拷贝到 项目目录\app\libs下即可,将so文件按照平台分类目录放到 项目目录\app\src\main\jniLibs\平台 ...

  4. 解决getElementsByClassName兼容问题

    getElementsByClassName这个方法很常用,但是只有较新的浏览器才兼容,所以我们需要自己写个方法,解决这个问题,使它能够兼容各个浏览器. function getElementsByC ...

  5. python多进程,以及进程池并发

    模拟多进程 #!/usr/bin/env python#-*- coding:utf-8 -*-import timefrom multiprocessing import Process def s ...

  6. redis10--主从模式

    redis的主从模式(1)介绍redis存储数据是在内存中运行的,运行速度比关系型数据库要快一些.而且它具有SortSet/Hash等具有特色的数据类型,这是其它数据库无法比拟的.redis有增删改查 ...

  7. 总结一下js的原型和原型链

    最近学习了js的面向对象编程,原型和原型链这块是个难点,理解的不是很透彻,这里搜集了一些这方面的资料,以备复习所用 一. 原型与构造函数 Js所有的函数都有一个prototype属性,这个属性引用了一 ...

  8. 【第七篇】Volley之处理Gzip数据

    一般对于API请求需带上GZip压缩,因为API返回数据大都是Json串之类字符串,GZip压缩后内容大小大幅降低. public class GZipRequest extends StringRe ...

  9. 《JS权威指南学习总结--7.10 数组类型》

    内容要点: 一.数组类型 判断它是否为数组通常非常有用.在ES5中,可以使用Array.isArray()函数来做这件事情: Array.isArray([]); //=>true Array. ...

  10. onS 记录

    1.用户的解锁                                                         用户因多次登录失败而被锁的情况下,可用faillog命令来解锁.具体如下 ...