UVA 11542 Square ——线性基
【题目分析】
每个数没有超过500的因子。很容易想到把每一个数表示成一个二进制的数。
(0代表该质数的次数为偶数,1代表是奇数)
然后问题转化成了选取一些二进制数,使他们的异或和为0。
高斯消元,2^(自由元)即为答案,需要把空集的情况减去,所以减一。
然而发现并不需要知道哪些是自由元,所以只需要用线性基去维护即可。
然后代码就呼之欲出了。
【代码】
#include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set> #include <queue> #include <string> #include <iostream> #include <algorithm> using namespace std; #define maxn 500005 #define ll long long #define inf 0x3f3f3f3f #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) void Finout() { #ifndef ONLINE_JUDGE freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); #endif } int Getint() { int x=0,f=1; char ch=getchar(); while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();} while (ch>='0'&&ch<='9') x=x*10+ch-'0'; return x*f; } ll Getll() { ll x=0,f=1; char ch=getchar(); while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();} while (ch>='0'&&ch<='9') x=x*10+ch-'0'; return x*f; } int pri[205],top; void init() { F(i,2,500) { int flag=1; F(j,2,sqrt(i)) if (i%j==0) flag=0; if (flag) pri[++top]=i; } // F(i,1,top) cout<<pri[i]<<" "; // cout<<"over"<<endl; } int t,a[205][205],n,cnt; int lb[205][205],hav[205]; int main() { Finout(); init(); scanf("%d",&t); // cout<<t<<endl; while (t--) { // cout<<"test "<<t<<endl; memset(hav,0,sizeof hav); memset(lb,0,sizeof lb); memset(a,0,sizeof a); cnt=0; scanf("%d",&n); F(i,1,n) { ll x; scanf("%lld",&x); // cout<<"now is "<<x<<endl; F(j,1,top) { while (x%pri[j]==0) { a[i][j]=!a[i][j]; x/=pri[j]; // cout<<j<<" ^ 1"<<endl; } } // cout<<i<<": "; // D(j,top,1) cout<<a[i][j]; cout<<endl; } F(i,1,n) { int flag=0; D(j,top,1) { if (a[i][j]) { // cout<<"have in "<<j<<endl; if (!hav[j]) { // cout<<"put a"<<endl; // D(k,top,1) cout<<a[i][k]; cout<<endl; D(k,j,1) lb[j][k]=a[i][k]; hav[j]=1; flag=1; break; } else { // cout<<"star to ^"<<endl; D(k,j,1) a[i][k]^=lb[j][k]; // D(k,top,1) cout<<a[i][k]; cout<<endl; } } } if (!flag) cnt++; } cout<<(1LL<<cnt)-1<<endl; } }
UVA 11542 Square ——线性基的更多相关文章
- UVA 11542 - Square(高斯消元)
UVA 11542 - Square 题目链接 题意:给定一些数字.保证这些数字质因子不会超过500,求这些数字中选出几个,乘积为全然平方数,问有几种选法 思路:对每一个数字分解成质因子后.发现假设要 ...
- xor方程组消元 UVA 11542 Square
题目传送门 题意:给n个数,选择一些数字乘积为平方数的选择方案数.训练指南题目. 分析:每一个数字分解质因数.比如4, 6, 10, 15,, , , , 令,表示选择第i个数字,那么,如果p是平方数 ...
- UVa 11542 Square (高斯消元)
题意:给定 n 个数,从中选出一个,或者是多个,使得选出的整数的乘积是完全平方数,求一共有多少种选法,整数的素因子不大于 500. 析:从题目素因子不超过 500,就知道要把每个数进行分解.因为结果要 ...
- Uva 11542 Square
题目中说数组中的数的最大质因子不超过500,我们筛出≤500的质数,然后考虑对每个质数列一个方程组.. 然后这几乎就是高斯消元求解异或方程组的模板题了.... 注意答案是 2^(自由元数量)-1,因为 ...
- UVA 11542 Square 高斯消元 异或方程组求解
题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...
- Codeforces 895C Square Subsets(状压DP 或 异或线性基)
题目链接 Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...
- 洛谷CF895C Square Subsets(线性基)
洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...
- CF895C Square Subsets [线性基]
线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
随机推荐
- ubuntu 常用命令记录
1.# 表示权限用户(如:root),$ 表示普通用户 开机提示:Login:输入用户名 password:输入口令 用户是系统注册用户成功登陆后,可以进入相应的用户环境. 退出当前shel ...
- GoF 设计模式:浅浅印象
23种设计模式,常常多个模式结合使用,主要是为了解决中大型软件项目"类和对象"膨胀的问题,进而有效组织类的结构而提出的.可划分为3类:创建型(关于类的创建),结构型(多个类的组织) ...
- Java Web 错误排查
排查404 1. 检查web.xml,有没有放在web-inf下面,再检查过滤器有没有配置 <filter> <filter-name>struts</filter-na ...
- 空间表SpaceList
比如在建一个成绩管理系统,这时候定义的名字一般都是char szName[20],这样比较浪费,其实不只是定义名字,定义好多变量都这样,并没有体现动态. 此处出现空间表(SpaceList),通过指针 ...
- 【项目笔记】布局文件报错Suspicious size: this will make the view invisible, probably intended for layout_width
写着写着就懵逼了,一直以为布局文件没写错啊,horizontal就是竖直啊,原来布局文件报错,不仅仅需要从报错的地方解决问题,还需要从其他地方去分析. 很明显是方向orientation选错了,应该写 ...
- attach
http://bbs.chinaunix.net/thread-2091967-1-1.html 大概跟父进程,子进程,信号等有关,一个没有操作系统的赤裸裸的单片机上是不可以attach的.
- FusionCharts生成Flash图表常见问题FAQ
本文主要汇总了FusionCharts生成Flash图表时的一些常见问题(FAQ)以及解决方法/调试方法,欢迎交流! 问题描述:利用FusionCharts创建Flash图表时,能否直接从数组或rec ...
- ural1682 Crazy Professor
Crazy Professor Time limit: 1.0 secondMemory limit: 64 MB Professor Nathan Mathan is crazy about mat ...
- pop动画使用示例
// 弹簧动画 POPSpringAnimation *anim = [POPSpringAnimation animationWithPropertyNamed:kPOPViewFrame]; an ...
- Smarty模版
smarty.inc.php <?php //创建一个实际路径 define('ROOT_PATH',dirname(__FILE__)); //引入Smarty require ROOT_PA ...