最大值与次大值的科学求法

Cm = 0,说明不存在次大值;

    int a[]={,,,,};
int Zm=,Cm=;
for(int i=;i<;i++){
if(a[i]>Cm){
Cm=a[i];
}
if(Cm>Zm) Zm=Cm;
}
cout<<M1<<" "<<M2<<endl;

数位dp经典模板(不要62)

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define pb push_back
#define LL long long
LL dp[][];
int a[];
LL dfs(int pos,int pre,bool lead0,bool limit){
if(pos==-) return ;
if(!limit && !lead0 && dp[pos][pre]!=-) return dp[pos][pre];
int up=limit ?a[pos] :;
LL ans=;
for(int i=;i<=up;i++){
int nle=(i==&&lead0);
int nli=(i==up&&limit);
if(i==||(i==&&pre==)) continue;
ans+=dfs(pos-,i,nle,nli);
}
if(!limit && !lead0) dp[pos][pre]=ans;
return ans;
}
LL solve(LL x){
int w=;
while(x){
a[w++]=x%;
x/=;
}
return dfs(w-,-,true,true);
}
int main()
{
memset(dp,-,sizeof(dp));
LL l,r;
while(~scanf("%lld %lld",&l,&r)){
if(l+r==) break;
printf("%lld\n",solve(r)-solve(l-));
}
return ;
}

结构体内部排序的方法(适用于set的自动排序)

struct Node {
int id,s;
Node(int _i,int _s):id(_i),s(_s) {}
bool operator < (const Node& b) const {
if(s!=b.s) return s<b.s;
else return id<b.id;
}
};

中国剩余定理(互质与非互质通用版)

int m[],r[];
int e_gcd(int a,int b,int &x,int &y) {
if(b==) {
x=;
y=;
return a;
}
int ans=e_gcd(b,a%b,x,y);
int temp=x;
x=y;
y=temp-a/b*y;
return ans;
}
int Zhong() {
int M = m[],R = r[];
for(int i = ; i < ; i++) {
int c = r[i]-R,x,y;
int gcd = e_gcd(M,m[i],x,y);
if(c%gcd != ) return -;
x = c*x;
x = (x+m[i]) % m[i];
int X = x*M + R;
M = m[i]/gcd*M;
R = X % M;
}
return (R%M+M)%M;
}

线段树(求区间最大值):

const int N = 1e6+;
#define lc 2*node
#define rc 2*node+1
#define MAX 1e9
int seg[N*+],dp[N];
void Build(int node,int l,int r){
if(l == r) seg[node] = MAX;
else {
int mid = (l+r)>>;
Build(lc,l,mid);
Build(rc,mid+,r);
seg[node] = min(seg[lc],seg[rc]);
}
}
void Update(int node,int l,int r,int k,int num){
if(l==r) {
seg[node] = num;
return;
}
int mid = (l+r)>>;
if(k <= mid) Update(lc,l,mid,k,num);
else Update(rc,mid+,r,k,num);
seg[node] = min(seg[lc],seg[rc]);
}
int query(int node,int l,int r,int ql,int qr){
int p1,p2;
if(ql > r || qr < l) return MAX;
if(l >= ql && r <= qr) return seg[node];
int mid = (l+r)>>;
p1 = query(lc,l,mid,ql,qr);
p2 = query(rc,mid+,r,ql,qr);
return min(p1,p2);
}

 求逆元(含扩展欧几里得)

ll ex_gcd(ll a,ll b,ll &x,ll &y) {
if(b==) {
x=;
y=;
return a;
}
ll ans=ex_gcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
return ans;
}

要求 a和b的最大公约数是1,然后x = (x+b)%b 将x转到正确的区间,x就是a的逆元。

zkw费用流

const int N = ;
const int M = ;
const int INF = 1e9;
const double eps = 1e-;
struct Edge {
int next,cap,v;
double cost;
Edge() {}
Edge(int vv,int ca,double co,int ne) {
v=vv;
cap = ca;
cost=co;
next=ne;
}
} edge[M];
int head[N],e,vis[N];
double d[N],cost,ans;
int src,des;
void init() {
memset(head, -, sizeof(head));
e = ;
ans = cost = ;
}
void addEdge(int u, int v, int cap, double cost) {
edge[e] = Edge(v,cap,cost,head[u]);
head[u] = e++;
edge[e] = Edge(u,,-cost,head[v]);
head[v] = e++;
}
int aug(int u, int f) {
if(u == des) {
ans += cost * f;
return f;
}
vis[u] = ;
int tmp = f;
for(int i = head[u]; i != -; i = edge[i].next)
if(edge[i].cap && fabs(edge[i].cost)<eps && !vis[edge[i].v]) {
int delta = aug(edge[i].v, tmp < edge[i].cap ? tmp : edge[i].cap);
edge[i].cap -= delta;
edge[i^].cap += delta;
tmp -= delta;
if(!tmp) return f;
}
return f - tmp;
}
bool modlabel() {
for(int i = src; i <= des; i++) d[i] = INF;
d[des] = ;
deque<int>Q;
Q.push_back(des);
while(!Q.empty()) {
int u = Q.front();
double tmp;
Q.pop_front();
for(int i = head[u]; i != -; i = edge[i].next) {
tmp = d[u]-edge[i].cost;
if(edge[i^].cap && d[edge[i].v]>tmp+eps){
d[edge[i].v] = tmp;
double a = tmp;
double b = d[Q.empty() ?src :Q.front()];
(b>a+eps||(fabs(a-b)<eps)) ?Q.push_front(edge[i].v) :Q.push_back(edge[i].v);
}
} }
for(int u = src; u <= des; u++)
for(int i = head[u]; i != -; i = edge[i].next)
edge[i].cost += d[edge[i].v] - d[u];
cost += d[src];
return d[src] < INF;
}
void costflow() {
while(modlabel()) {
do {
memset(vis, , sizeof(vis));
} while(aug(src, INF));
}
}

zkw费用流修正版

const int N = ;
const int M = ;
const int INF = 1e9;
const double eps = 1e-;
struct Edge {
int next,cap,v;
double cost;
Edge() {}
Edge(int vv,int ca,double co,int ne) {
v=vv;
cap = ca;
cost=co;
next=ne;
}
} edge[M];
int head[N],e,vis[N];
double d[N],cost,ans;
int src,des;
void init() {
memset(head, -, sizeof(head));
e = ;
ans = cost = ;
}
void addEdge(int u, int v, int cap, double cost) {
edge[e] = Edge(v,cap,cost,head[u]);
head[u] = e++;
edge[e] = Edge(u,,-cost,head[v]);
head[v] = e++;
}
int aug(int u, int f) {
if(u == des) {
ans += cost * f;
return f;
}
vis[u] = ;
int tmp = f;
for(int i = head[u]; i != -; i = edge[i].next)
if(edge[i].cap && fabs(edge[i].cost)<eps && !vis[edge[i].v]) {
int nxtf = min(tmp,edge[i].cap);
int delta = aug(edge[i].v,nxtf);
edge[i].cap -= delta;
edge[i^].cap += delta;
tmp -= delta;
if(!tmp) return f;
}
return f - tmp;
}
bool modlabel() {
for(int i = src; i <= des; i++) d[i] = INF;
d[des] = ;
deque<int>Q;
Q.push_back(des);
while(!Q.empty()) {
int u = Q.front();
double a,b;
Q.pop_front();
for(int i = head[u]; i != -; i = edge[i].next) {
a = d[u]-edge[i].cost;
if(edge[i^].cap && d[edge[i].v]>a+eps) {
d[edge[i].v] = a;
b = d[Q.empty() ?src :Q.front()];
if(b>a+eps||(fabs(a-b)<eps)) {
Q.push_front(edge[i].v);
} else Q.push_back(edge[i].v);
}
}
}
for(int u = src; u <= des; u++)
for(int i = head[u]; i != -; i = edge[i].next)
edge[i].cost += d[edge[i].v] - d[u];
cost += d[src];
return d[src] < INF;
}
void costflow() {
while(modlabel()) {
do {
memset(vis, , sizeof(vis));
} while(aug(src, INF));
}
}

spfa最小费用最大流

const int N = ;
const int M = N*N;
const int INF = 1e9;
struct Edge {
int from, to, cap, flow, cost, next;
};
Edge edge[M];
int head[N],pre[N],dist[N],edgenum;
bool vis[N];
int source, sink;
void init() {
edgenum = ;
memset(head, -, sizeof(head));
}
void addEdge(int u, int v, int w, int c) {
Edge E1 = {u, v, w, , c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, , , -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
bool SPFA(int s, int t) {
queue<int> Q;
while(!Q.empty()) Q.pop();
for(int i=;i<N;i++) dist[i]=INF;
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
dist[s] = ;
vis[s] = true;
Q.push(s);
while(!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next) {
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow) {
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;
if(!vis[E.to]) {
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -;
}
void MCMF(int s, int t, int &cost, int &flow) {
flow = ;
cost = ;
while(SPFA(s, t)) {
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
}

Dinic算法求最大流(邻接表版本)

#define INF 0x3f3f3f3f
#define MAX_V 20
#define MAX_E 2000
struct edge {
int to,cap,rev;
edge(int a=,int b=,int c=) :to(a),cap(b),rev(c) {}
};
vector<edge> G[MAX_V];
int level[MAX_V];
int iter[MAX_V];
void init(int v) {
for(int i=; i<=v; i++) G[i].clear();
}
void addedge(int from,int to,int cap) {
G[from].push_back( edge(to,cap,G[to].size()));
G[to].push_back( edge(from,,G[from].size()-));
}
void bfs(int s) {
memset(level,-,sizeof(level));
queue<int> que;
level[s]=;
que.push(s);
while(!que.empty()) {
int v=que.front();
que.pop();
for(int i=; i<G[v].size(); i++) {
edge &e=G[v][i];
if(e.cap>&&level[e.to]<) {
level[e.to]=level[v]+;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f) {
if(v==t) return f;
for(int &i=iter[v]; i<G[v].size(); i++) {
edge &e=G[v][i];
if(e.cap>&&level[v]<level[e.to]) {
int d=dfs(e.to,t,min(f,e.cap));
if(d>) {
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
}
int max_flow(int s,int t) {
int flow=;
while(true) {
bfs(s);
if(level[t]<) return flow;
memset(iter,,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>) flow+=f;
}
}

Dinic算法链式前向星版本(可以有序储存反向弧)

const int INF=0x3f3f3f3f;
const int N=;
const int M=**;
int n,p;
int s,t,e_max,fir[N],dis[N],q[N];
struct Node {
int c;
int in[],ou[];
} a[N];
struct edge {
int u,v,w,nex;
} e[M];
void add_edge(int u,int v,int w,int x) {
if(x==) return;
e[e_max].u=u;
e[e_max].v=v;
e[e_max].w=w;
e[e_max].nex=fir[u];
fir[u]=e_max++;
add_edge(v,u,,x+);
}
int bfs() {
int i,x,v,tail=,head=;
memset(dis,,sizeof(dis));
dis[s]=;
q[tail++]=s;
while(head<tail) {
x=q[head++];
for(i=fir[x]; i!=-; i=e[i].nex)
if(e[i].w&&dis[v=e[i].v]==) {
dis[v]=dis[x]+;
if(v==t)
return ;
q[tail++]=v;
}
}
return ;
}
int dfs(int s,int limit) {
if(s==t)
return limit;
int i,v,tmp,cost=;
for(i=fir[s]; i!=-; i=e[i].nex)
if(e[i].w&&dis[s]==dis[v=e[i].v]-) {
tmp=dfs(v,min(limit-cost,e[i].w));
if(tmp>) {
e[i].w-=tmp;
e[i^].w+=tmp;
cost+=tmp;
if(limit==cost)
break;
} else dis[v]=-;
}
return cost;
}
int Dinic() {
int ans=;
while(bfs())
ans+=dfs(s,INF);
return ans;
}
void init() {
s=;
t=n+;
memset(fir,-,sizeof(fir));
e_max=;
}

Dinic算法(修正版)

const int N = ;
const int INF = 1e9;
const int M = N*N;
struct edge {
int u,v,w,nex;
} e[M];
int s,t,e_max,fir[N],dis[N],q[N];
void init() {
memset(fir,-,sizeof(fir));
e_max=;
}
void add_edge(int u,int v,int w,int x) {
if(x==) return;
e[e_max].u=u;
e[e_max].v=v;
e[e_max].w=w;
e[e_max].nex=fir[u];
fir[u]=e_max++;
add_edge(v,u,,x+);
}
int bfs() {
int i,x,v,tail=,head=;
memset(dis,,sizeof(dis));
dis[s]=;
q[tail++]=s;
while(head<tail) {
x=q[head++];
for(i=fir[x]; i!=-; i=e[i].nex)
if(e[i].w&&dis[v=e[i].v]==) {
dis[v]=dis[x]+;
if(v==t)
return ;
q[tail++]=v;
}
}
return ;
}
int dfs(int s,int limit) {
if(s==t)
return limit;
int i,v,tmp,cost=;
for(i=fir[s]; i!=-; i=e[i].nex)
if(e[i].w&&dis[s]==dis[v=e[i].v]-) {
tmp=dfs(v,min(limit-cost,e[i].w));
if(tmp>) {
e[i].w-=tmp;
e[i^].w+=tmp;
cost+=tmp;
if(limit==cost)
break;
} else dis[v]=-;
}
return cost;
}
int Dinic() {
int ans=;
while(bfs())
ans+=dfs(s,INF);
return ans;
}

普通母函数解决整数拆分组合数(完全背包也可以解决)

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std; int c1[],c2[];
int A[]; int main()
{
int T,N,K;
cin >> T;
while(T--)
{
cin >> N >> K;
memset(A,,sizeof(A));
for(int i = ; i <= K; ++i)
{
int a,b;
cin >> a >> b;
A[a] = b;
}
for(int i = ; i <= N; ++i)
c1[i] = c2[i] = ;
c1[] = ;
for(int i = ; i <= K; ++i) //第i项表达式(1+x^2+...)
{
for(int j = ; j <= N; ++j)
//前面i个表达式累乘的表达式(前一表达式)里第j个变量
{
/*如(1+x)(1+x^2)(1+x^3),j先指示的是1和x的系数,i=2执行完之后变为(1+x+x^2+x^3)(1+x^3),这时候j应该指示的是合并后的第一个括号的四个变量的系数。*/
for(int k = ; j+i*k <= N && k <= A[i]; ++k)
c2[j+i*k] += c1[j];//c2[]保存结果
}// k表示的是将要计算的表达式的每项。(因为第i个表达式的增量是i,所以k每次增i)。
for(int j = ; j <= N; ++j)
{
c1[j] = c2[j];//迭代
c2[j] = ;
}
}
cout << c1[N] << endl;
}
return ;
}

 指数型母函数问题:
 假设有8个元素,其中a1重复3次,a2重复2次,a3重复3次。从中取r个组合,求其排列数。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std; double f[] = {,,,,,,,,,,};
double num[],c1[],c2[];
int main()
{
int N,M;
while(cin >> N >> M)
{
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
for(int i = ; i < N; ++i)
cin >> num[i];
for(int i = ; i <= num[]; ++i)
c1[i] = 1.0/f[i];
for(int i = ; i < N; ++i)
{
for(int j = ; j <= M; ++j)
for(int k = ; k <= num[i] && (k+j)<=M; ++k)
c2[k+j] += (c1[j]/f[k]);
for(int j = ; j <= M; ++j)
{
c1[j] = c2[j];
c2[j] = ;
}
}
double s = 1.0*c1[M]*f[M];
printf("%.0lf\n",s);
} return ;
}

 树状数组区间更新,单点查询与区间更新

单点查询值

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int N = 1e5+;
int c[N],n,m,a[N];
int lowbit(int x){
return x&(-x);
}
void update(int k,int x){
for(int i=k;i<=m;i+=lowbit(i)){
c[i]+=x;
}
}
int getsum(int k){
int sum=;
while(k){
sum+=c[k];
k-=lowbit(k);
}
return sum;
}
int main()
{
int l,r,x,q;
while(~scanf("%d%d%d",&m,&n,&q)){
memset(c,,sizeof(c));
for(int i=;i<=m;i++) {
scanf("%d",&a[i]);
}
for(int i=;i<=n;i++){
scanf("%d%d%d",&l,&r,&x);
update(l,x);
update(r+,-x);
}
// for(int i=1;i<=m;i++){
// cout<<":: "<<getsum(i)<<endl;
// }
for(int i=;i<=q;i++){
scanf("%d%d",&l,&r);
int ans=;
for(int j=l;j<=r;j++){
if(a[j]-getsum(j) < ){
ans++;
}
}
printf("%d\n",ans);
}
}
return ;
}

区间查询值

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int N = 1e5+;
#define LL long long
LL c1[N],c2[N],s[N];
int n,q,l,r;
int lowbit(int x) {
return x&(-x);
}
void update(LL *a,int i,LL d) {
while(i<=n) {
a[i] += d;
i+=lowbit(i);
}
}
LL getsum(LL* a,int i) {
LL sum=;
while(i>) {
sum+=a[i];
i-=lowbit(i);
}
return sum;
}
void Gupdate(int l,int r,LL tmp) {
update(c1,l,tmp);
update(c1,r+,-tmp);
update(c2,l,tmp*l);
update(c2,r+,-tmp*(r+));
}
LL getAns(int l,int r) {
LL ans=s[r]-s[l-];
ans += (r+)*getsum(c1,r)-l*getsum(c1,l-);
ans -= getsum(c2,r)-getsum(c2,l-);
return ans;
}
int main() {
LL tmp;
char c[];
while(~scanf("%d%d",&n,&q)) {
memset(c1,,sizeof(c1));
memset(c2,,sizeof(c2));
s[]=;
for(int i=; i<=n; i++) {
scanf("%lld",&tmp);
s[i]=s[i-]+tmp;
}
while(q--) {
scanf("%s%d%d",c,&l,&r);
if(c[]=='Q') {
printf("%lld\n",getAns(l,r));
} else {
scanf("%lld",&tmp);
Gupdate(l,r,tmp);
}
}
}
return ;
}

ACM常用模板的更多相关文章

  1. ACM常用模板整理

    线段树单点修改区间查询 #include<stdio.h> #include<string.h> #include<algorithm> using namespa ...

  2. ACM算法模板 · 一些常用的算法模板-模板合集(打比赛专用)

    ACM算法模板 · 一些常用的算法模板-模板合集(打比赛专用)

  3. ACM常用算法及练习(2)

    ACM常用算法及练习 知识类型 重要度 容易度 应掌握度 典型题 其他           数据结构(5) 链表 ★★☆ ★★★ ★★☆     栈 stack ★★★ ★★★ ★★★ HLoj120 ...

  4. ACM常用算法及练习(1)

    ACM常用算法及练习 第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来. 1.最短 ...

  5. NDK(10)Android.mk各属性简介,Android.mk 常用模板

    参考 : http://blog.csdn.net/hudashi/article/details/7059006 本文内容: Android.mk简介, 各属性表, 常用Android.mk模板 1 ...

  6. IDEA学习——模板及其常用模板

    模板及其常用模板 (1)psvm (2)sout sout / soutp / soutv / 变量.sout (3)fori iter增强for循环 itar普通for循环 (4)list.for ...

  7. Vue常用模板语法

    常用模板语法   本篇将在上一篇的基础上记录文本渲染.表达式.过滤器以及常用指令的简单用法. 一.文本渲染 Vue支持动态渲染文本,即在修改属性的同时,实时渲染文本内容.同时为了提高渲染效率,也支持只 ...

  8. html5常用模板下载网站

    html5常用模板下载网站 开创者素材.站长素材.模板之家 推荐葡萄家园素材网,他们网页模板栏目有个HTML模板,很多静态源码.应该是你所需要的. html静态页面模板 还是服饰素材啊 朋友 设计云 ...

  9. NDK(10)Android.mk各属性简介,Android.mk 常用模板--未完

    参考 : http://blog.csdn.net/hudashi/article/details/7059006 1. Android.mk简介 Android.mk文件是GNU Makefile的 ...

随机推荐

  1. 开发一个微信小程序项目教程

    一.注册小程序账号 1.进入微信公众平台(https://mp.weixin.qq.com/),注册小程序账号,根据提示填写对应的信息即可.2.注册成功后进入首页,在 小程序发布流程->小程序开 ...

  2. 64位linux报错Could not initialize class java.awt.image.BufferedImage

    最近碰到一个问题: 64位linux报错Could not initialize class java.awt.image.BufferedImage 在WIN平台下运行正常BufferedImage ...

  3. ASP.NET控件Repeter的使用

    使用repeter控件,绑定数据源,能够省去在前台页面中拼接繁杂的for.foreach的时间,整个页面看起来也更加直观.常配合<select>标签.<table>标签使用. ...

  4. 微信JSAPI支付 跟 所遇到的那些坑

    首先介绍一下我在调用微信支付接口使用的是 weixin.senparc SDK,非常方便好用开源的一个微信开发SDK. weixin.senparc SDK 官网:http://weixin.senp ...

  5. 国内的阿里云MAVEN仓库,速度很快

    配置很简单,修改conf文件夹下的settings.xml文件,添加如下镜像配置: <mirrors> <mirror> <id>alimaven</id&g ...

  6. CodeForces 635C XOR Equation

    位运算. 又涨姿势了:$a + b = (aXORb) + 2*(aANDb)$,$ (aXORb)$是不进位的部分,$2*(aANDb)$为进位之后的部分,相加就是$a + b$. 知道了这个转换, ...

  7. url截取

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  8. 关于一条定制长按Power键弹出Dialog的需求

    如题,需要定制长按Power键弹出的Dialog,UI上的大致效果是:全屏,中间下拉按钮“Swipe Down To Power Off”下拉关机,底部左右两侧“Reboot”,“Cancel”按钮, ...

  9. LaTeXの学习笔记

    听说LaTeX挺有趣,决定学习一下提升自己的境(逼)界(格),借鉴了许多大神的经验与笔记,希望能坚持下去......(* ̄;( ̄ *) 1.论文写作的三种格式 eg. \documentclass{a ...

  10. python第四天

    浏览器与Server交互: import socketdef handle_request(client): buf = client.recv(1024) client.send('HTTP/1.1 ...