HihoCoder 1195 高斯消元·一(高斯消元)
题意
https://hihocoder.com/problemset/problem/1195
思路
高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) 。
过程大致是:
- 构造一个未知数的倒三角,并维护多解标记;
- 寻找是否出现没有未知数但常数非零的式子,有则返回无解;
- 多解标记若存在则返回多解;
- 在倒三角里倒着扫一遍,解出所有未知数。
下面是代码实现:
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=505;
const double eps=1e-8;
double a[2*N][N],b[2*N];
int n,m;
int Gauss(double a[2*N][N],double b[2*N],int n,int m)
{
bool flag=0;
for(int i=1,r=1;i<=n;i++,r++)
{
bool f=0;
FOR(j,r,m)if(fabs(a[j][i])>eps)
{
swap(a[j],a[r]),swap(b[j],b[r]);
f=1;break;
}
if(!f){flag=1,r--;continue;}
FOR(j,r+1,m)
{
FOR(k,i+1,n)a[j][k]-=a[r][k]*a[j][i]/a[r][i];
b[j]-=b[r]*a[j][i]/a[r][i];
a[j][i]=0;
}
}
FOR(i,1,m)if(fabs(b[i])>eps)
{
bool f=0;
FOR(j,1,n)if(fabs(a[i][j])>eps){f=1;break;}
if(!f)return 0;
}
if(flag)return -1;
DOR(i,n,1)
{
FOR(j,i+1,n)b[i]-=a[i][j]*b[j];
b[i]/=a[i][i];
a[i][i]=1;
}
return 1;
}
int main()
{
scanf("%d%d",&n,&m);
FOR(i,1,m)
{
FOR(j,1,n)scanf("%lf",&a[i][j]);
scanf("%lf",&b[i]);
}
int res=Gauss(a,b,n,m);
if(res==-1)puts("Many solutions");
else if(res==0)puts("No solutions");
else FOR(i,1,n)printf("%d\n",(int)(b[i]+0.5));
return 0;
}
HihoCoder 1195 高斯消元·一(高斯消元)的更多相关文章
- 高斯消元(Gauss消元)
众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??! NO NO NO ...
- hihoCoder 1195 高斯消元.一
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...
- hihoCoder #1195 高斯消元·一
题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...
- while:1.兔子生兔子问题 2.打印菱形 3.求100以内质数的和4.洗发水15元一瓶,牙膏5元一支,香皂2元一块,150元刚好花完
1.兔子生兔子问题: 2.打印菱形 3.求100以内质数的和 4.洗发水15元一瓶,牙膏5元一支,香皂2元一块,150元刚好花完有多少种情况?
- python 元类与定制元类
1:元类 元类:类的创建与管理者 所有类的元类是type class a: pass print(type(a)) 结果:<class 'type'> 2:定制元类 类的实例化过程:(可看 ...
- python学习第七讲,python中的数据类型,列表,元祖,字典,之元祖使用与介绍
目录 python学习第七讲,python中的数据类型,列表,元祖,字典,之元祖使用与介绍 一丶元祖 1.元祖简介 2.元祖变量的定义 3.元祖变量的常用操作. 4.元祖的遍历 5.元祖的应用场景 p ...
- Metaspace 之一:Metaspace整体介绍(永久代被替换原因、元空间特点、元空间内存查看分析方法)
回顾 根据JVM内存区域的划分,简单的画了下方的这个示意图.区域主要分为两大块,一块是堆区(Heap),我们所New出的对象都会在堆区进行分配,在C语言中的malloc所分配的方法就是从Heap区获取 ...
- [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式
使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...
- 多么痛的领悟---关于RMB数据类型导致的元转分分转元的bug
关于金额的数据类型,以及元转分分转元之间这种转换,以及元和分的比较,我相信很多人都踩过坑. 反正我是踩过. 而且,昨天和今天又重重的踩了两脚. 代付查询接口,支付中心给溢+响应的报文里,amount的 ...
随机推荐
- 排序(Sort)-----选择排序
声明:文中动画转载自https://blog.csdn.net/qq_34374664/article/details/79545940 1.选择排序简介 选择排序(Select Sort ...
- python中常见的错误类型
Python异常类 Python是面向对象语言,所以程序抛出的异常也是类.常见的Python异常有以下几个 ,大家只要大致扫一眼,有个映像,等到编程的时候,相信大家肯定会不只一次跟他们照面(除非你不用 ...
- 检测FTP服务并开启FTP服务
1. 检测FTP服务是否开启 1.1. 通过查询提供FTP服务的进程是否存在,并未找到任何包含ftp关键字的进程信息,可判断服务未开启. root@lb- ~ # ps -ef | grep ftp ...
- python 将一个JSON 字典转换为一个Python 对象
将一个JSON 字典转换为一个Python 对象例子 >>> s='{"name":"apple","shares":50 ...
- 转:【专题九】实现类似QQ的即时通信程序
引言: 前面专题中介绍了UDP.TCP和P2P编程,并且通过一些小的示例来让大家更好的理解它们的工作原理以及怎样.Net类库去实现它们的.为了让大家更好的理解我们平常中常见的软件QQ的工作原理,所以在 ...
- vue之vue-cookies安装和使用说明
vue之vue-cookies安装和使用说明npm官方链接:https://www.npmjs.com/package/vue-cookies 安装,在对应项目根目录下执行:npm install v ...
- hud3007 Buried memory
题目链接 最小圆覆盖 并不知道为什么是O(n)的,而且要随机化点的顺序 #include<algorithm> #include<iostream> #include<c ...
- Javascript 面向对象编程1:封装
Javascript是一种基于对象(object-based)的语言,你遇到的所有东西几乎都是对象.但是,他又不是一种真正的面向对象编程语言,因为它的语法中没有class(类). 那么,如果我们要把& ...
- javaweb笔记—04(预编译和泛型)
预编译:ps对象1.ps可进行预编译,占位符传值,性能高于sta的(数据库驱动层有优化)2.比较灵活,数据库将预编译的SQL缓存了,第二次访问,就不用预编译,直接执行.3.较为安全,不会发生SQL注入 ...
- git getting started
2019/4/25-- after committing to blessed. modify dependency file to download file so as to get latest ...