'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类) ''' import numpy as np
import time def loadData(fileName):
'''
加载Mnist数据集
:param fileName:要加载的数据集路径
:return: list形式的数据集及标记
'''
print('start to read data')
# 存放数据及标记的list
dataArr = []
labelArr = []
# 打开文件
fr = open(fileName, 'r')
# 将文件按行读取
for line in fr.readlines():
# 对每一行数据按切割福','进行切割,返回字段列表
curLine = line.strip().split(',') # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
if int(curLine[0]) >= 5:
labelArr.append(1)
else:
labelArr.append(-1)
# 存放标记
# [int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
# [int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
dataArr.append([int(num) / 255 for num in curLine[1:]]) # 返回data和label
return dataArr, labelArr def perceptron(dataArr, labelArr, iter=50):
'''
感知器训练过程
:param dataArr:训练集的数据 (list)
:param labelArr: 训练集的标签(list)
:param iter: 迭代次数,默认50
:return: 训练好的w和b
'''
print('start to trans')
# 将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
# 转换后的数据中每一个样本的向量都是横向的
dataMat = np.mat(dataArr)
# 将标签转换成矩阵,之后转置(.T为转置)。
# 转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
# 对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
labelMat = np.mat(labelArr).T
# 获取数据矩阵的大小,为m*n
m, n = np.shape(dataMat)
# 创建初始权重w,初始值全为0。
# np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
# 样本长度保持一致
w = np.zeros((1, np.shape(dataMat)[1]))
# 初始化偏置b为0
b = 0
# 初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
h = 0.0001 # 进行iter次迭代计算
for k in range(iter):
# 对于每一个样本进行梯度下降
# 李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
# 进行一次梯度下降
# 在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
# 的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
# 两者的差异各有千秋,但较为常用的是随机梯度下降。
for i in range(m):
# 获取当前样本的向量
xi = dataMat[i]
# 获取当前样本所对应的标签
yi = labelMat[i]
# 判断是否是误分类样本
# 误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
# 在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
if -1 * yi * (w * xi.T + b) >= 0:
# 对于误分类样本,进行梯度下降,更新w和b
w = w + h * yi * xi
b = b + h * yi
# 打印训练进度
print('Round %d:%d training' % (k, iter)) # 返回训练完的w、b
return w, b def accuracy(dataArr, labelArr, w, b):
'''
测试准确率
:param dataArr:测试集
:param labelArr: 测试集标签
:param w: 训练获得的权重w
:param b: 训练获得的偏置b
:return: 正确率
'''
print('start to test')
# 将数据集转换为矩阵形式方便运算
dataMat = np.mat(dataArr)
# 将label转换为矩阵并转置,详细信息参考上文perceptron中
# 对于这部分的解说
labelMat = np.mat(labelArr).T # 获取测试数据集矩阵的大小
m, n = np.shape(dataMat)
# 错误样本数计数
errorCnt = 0
# 遍历所有测试样本
for i in range(m):
# 获得单个样本向量
xi = dataMat[i]
# 获得该样本标记
yi = labelMat[i]
# 获得运算结果
result = -1 * yi * (w * xi.T + b)
# 如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
if result >= 0:
errorCnt += 1
# 正确率 = 1 - (样本分类错误数 / 样本总数)
accruRate = 1 - (errorCnt / m)
# 返回正确率
return accruRate if __name__ == '__main__':
# 获取当前时间
# 在文末同样获取当前时间,两时间差即为程序运行时间
start = time.time() # 获取训练集及标签
trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
# 获取测试集及标签
testData, testLabel = loadData('../Mnist/mnist_test.csv') # 训练获得权重
w, b = perceptron(trainData, trainLabel, iter=30)
# 进行测试,获得正确率
accruRate = accuracy(testData, testLabel, w, b) # 获取当前时间,作为结束时间
end = time.time()
# 显示正确率
print('accuracy rate is:', accruRate)
# 显示用时时长
print('time span:', end - start)

程序结果

start to read data
start to read data
start to trans
Round 0:30 training
Round 1:30 training
Round 2:30 training
Round 3:30 training
Round 4:30 training
Round 5:30 training
Round 6:30 training
Round 7:30 training
Round 8:30 training
Round 9:30 training
Round 10:30 training
Round 11:30 training
Round 12:30 training
Round 13:30 training
Round 14:30 training
Round 15:30 training
Round 16:30 training
Round 17:30 training
Round 18:30 training
Round 19:30 training
Round 20:30 training
Round 21:30 training
Round 22:30 training
Round 23:30 training
Round 24:30 training
Round 25:30 training
Round 26:30 training
Round 27:30 training
Round 28:30 training
Round 29:30 training
start to test
accuracy rate is: 0.8172
time span: 2366.2143952846527

Python实现机器学习算法:感知机的更多相关文章

  1. Python实现机器学习算法:AdaBoost算法

    Python程序 ''' 数据集:Mnist 训练集数量:60000(实际使用:10000) 测试集数量:10000(实际使用:1000) 层数:40 ------------------------ ...

  2. Python实现机器学习算法:决策树算法

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:35 ...

  3. Python实现机器学习算法:EM算法

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...

  4. Python实现机器学习算法:朴素贝叶斯算法

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ''' import numpy as np import time def loadData(fileName): ''' ...

  5. Python实现机器学习算法:K近邻算法

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000(实际使用:200) ''' import numpy as np import time def loadData(file ...

  6. Python实现机器学习算法:逻辑回归

    import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import ma ...

  7. Python实现机器学习算法:线性回归

    import numpy as np from sklearn.datasets import load_diabetes from sklearn.utils import shuffle impo ...

  8. 【python与机器学习实战】感知机和支持向量机学习笔记(一)

    对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...

  9. 建模分析之机器学习算法(附python&R代码)

    0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...

随机推荐

  1. Quick-Cocos2d-x文件结构分析

    在上一章我们讲过了Quick-Cocos2d-x中的环境搭建,这章我们分析下quick中的文件结构吧!打开quick的文件夹,可以看到如下的这些目录和文件: bin:存放各种与引擎相关的脚本 comp ...

  2. 【Alpha版本】冲刺阶段——Day3

    [Alpha版本]冲刺阶段--Day3 阅读目录 今日进展 问题困难 明日任务 今日贡献量 TODOlist [今日进展] 密码算法方面: 参考了md5/sha1+salt和Bcrypt后,我们决定使 ...

  3. winscp 怎么用私钥文件登录的,以.ppk结尾的密钥文件

    Winscp默认用帐号密码登录,用私钥文件登录需要在高级选项里面的SSH--验证里面选择文件. Winscp使用的是putty作为SSH登录工具,而puttygen所生成的是以.ppk结尾的密钥文件. ...

  4. selenium-java web自动化测试工具抓取百度搜索结果实例

    selenium-java web自动化测试工具抓取百度搜索结果实例 这种方式抓百度的搜索关键字结果非常容易抓长尾关键词,根据热门关键词去抓更多内容可以用抓google,百度的这种内容容易给屏蔽,用这 ...

  5. JDBC的DBUtils源码

    DBUtils源码: package com.it.util; import java.sql.Connection; import java.sql.DriverManager; import ja ...

  6. Django中Session

    Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: ·数据库(默认) ·缓存 ·文件 ·缓存+数据库 ·加密cookie (1)数据库中的Session Djan ...

  7. Jenkins实现SVN+Maven+Java项目的持续集成

    Jenkins 2.46.1 Centos 7.3 JDK 7 安装jdk/maven/svn 在Jenkins所在的Linux机器安装jdk和maven,步骤就不说了,下面是环境变量: export ...

  8. dell win 10笔记本关闭多媒体键,启用功能键的快捷方式

    自从使用win 10之后,在使用快捷键方面就没有win 7之前来的顺手,比如F8切换投影仪,F5/F6调试等等.特地搜了下,使用Fn+Esc可以在功能键和多媒体键之间切换.

  9. python 爬取历史天气

    python 爬取历史天气 官网:http://lishi.tianqi.com/luozhuangqu/201802.html # encoding:utf-8 import requests fr ...

  10. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...