原文地址:

https://blog.csdn.net/elysion122/article/details/79628587

-------------------------------------------------------------------------------------------------

因为最近在将一个caffe的model移植到pytorch上,发现移植过去就没法收敛了,因此专门研究了一些细节。

batch normalization的公式如下:

caffe和pytorch在代码细节上略有不同,但是基本功能是一样的。

Caffe 是使用BN层和Scale层来实现Batch normalization 的,简单地说就是BN层用来计算方差均值,Scale层进行归一化,这个很多技术博客都已经分析过了。

其中BN层中有三个mult_lr:0比较奇怪,经过查资料,我的理解是BN层记录了三个数据:均值、方差、滑动系数,这三个数据不需要学习,仅仅需要根据进入网络的数据进行计算,因此设置为0。据说新版的caffe已经不需要专门设置这三个数据了。

scale可以设置是不是需要bias,应该表示的是需不需要 ββ

Pytorch的BN层实现了计算均值方差并且归一化的步骤,现在不同的版本参数略有不同,最新的  0.4.* 版本  多了一个参数。

class torch.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  • momentum=0.001和caffe默认值0.999,应该是一个意思,只不过一个是计算的1-momentum。
  • affine表示要不要两个系数γ和βγ,β

  • track_running_stats是    0.4(版本) 新出的一个参数,据说是追踪var和mean的,目前不是很清楚作用,等明白了再来更新。

【转载】 Caffe BN+Scale层和Pytorch BN层的对比的更多相关文章

  1. caffe中使用python定义新的层

    转载链接:http://withwsf.github.io/2016/04/14/Caffe-with-Python-Layer/ Caffe通过Boost中的Boost.Python模块来支持使用P ...

  2. Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  3. 转 Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  4. Caffe源码阅读(1) 全连接层

    Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...

  5. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  6. caffe怎么把全连接层转成convolutional层

    caffe中有把fc层转化为conv层的,其实怎么看参数都是不变的,对alex模型来说,第一个fc层的参数是4096X9216,而conv的维度是4096x256x6x6,因此参数个数是不变的,只是需 ...

  7. 【转】Caffe初试(七)其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...

  8. 动手学深度学习9-多层感知机pytorch

    多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...

  9. 基础才是重中之重~Data层如何调用BLL层的方法,如果觉得奇怪请看本文章

    回到目录 看似不伦不类 这个题目有点不伦不类,或者说有点伪模式了,不错,确实是这样,我们正确的开发思维是WEB层->BLL层->DATA层,每个层有对它下层的引用,下层不能引用上层,因为这 ...

随机推荐

  1. MySql(九)索引

    一.索引的介绍 数据库中专门用于帮助用户快速查找数据的一种数据结构.类似于字典中的目录,查找字典内容时可以根据目录查找到数据的存放位置吗,然后直接获取. 二 .索引的作用 约束和加速查找 三.常见的几 ...

  2. CSS三列布局之左右宽度固定,中间元素自适应问题

    最近学到了几种关于左右固定宽度,中间自适应的三列布局的方法,整理了一下,在这里跟大家一起分享分享,其中有什么不足的还望各位给指导指导哈. 首先我想到的是float——浮动布局 使用浮动,先渲染左右两个 ...

  3. Spring AOP+Log4j记录项目日志

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/6567672.html 项目日志记录是项目开发.运营必不可少的内容,有了它可以对系统有整体的把控,出现任何问题 ...

  4. Dagger2不自动生成daggerXXXcomponent

    在Fragment里面初始化dagger2创建对象时,不自动生成daggerXXXcomponent. 百思不得其解,后来发现是import android.app.Fragment;所以不自动生成. ...

  5. js 鼠标滚动 禁用 启用

    function disabledMouseWheel() { var div = document.getElementById('divid'); if (div.addEventListener ...

  6. windows 文件/文件夹操作

    move命令 命令作用:移动某个文件到指定的文件夹下 将D:\file\abc.zip 移动到 E:\test\文件夹下 move d:\file\abc.zip e:\test\ 移动之后再原来的文 ...

  7. TNS

    Oracle中TNS的完整定义:transparence Network Substrate透明网络底层,监听服务是它重要的一部分,不是全部,不要把TNS当作只是监听器 ORACLE当中,如果想访问某 ...

  8. sys 模块

    import sys #环境变量 print(sys.path) #查看已经加载的模块 print(sys.modules) #获取终端调用时的参数 print(sys.argv) #获取解释器的版本 ...

  9. day1 计算机硬件基础

    CPU包括运算符和逻辑符 储存器包括内存和硬盘 7200转的机械硬盘一般找到想要的数据需要9毫秒的时间      4+5   5毫秒的时间是磁头到磁盘轨道    4毫秒是平均开始查找想要的数据到找到的 ...

  10. 深度学习----Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...